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Abstract

We tackle the problem of using cooperative
manipulators to perform towel folding tasks.
Differently from other recent approaches, our
method executes what we call a momentum
fold - a swinging motion that exploits the
dynamics of the manipulated object. We
propose a new learning algorithm that com-
bines imitation and reinforcement learning.
Human demonstrations are used to reduce
the search space of the reinforcement learn-
ing algorithm, which then converges quickly.
The strengths of the algorithm come from
its efficient processing, fast learning capabil-
ities, absence of an object model, and appli-
cability to other problems exhibiting tempo-
rally incoherent parameter spaces. Experi-
ments were performed on a robotic platform,
demonstrating the algorithm’s capability.

1. Introduction

The popularity of service robotics has unveiled a mul-
titude of novel challenges that researchers need to un-
dertake before “a robot in every home” (Gates, 2004)
can become a reality. One such challenge involves de-
formable object manipulation with cooperative manip-
ulators. The inadequacy of deformable object models
for robotic applications (Gibson & Balkcom, 1997), the
absence of high-fidelity simulation tools for deformable
objects, and the lack of literature on the subject are all
factors delaying the development of robots capable of
performing a variety of tasks involving flexible objects.
The types of object we are interested in are highly
deformable and we undertake the problem of folding
rectangular towels using two manipulators working co-
operatively.
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We exploit machine learning techniques to discard
the requisite for a deformable object model, one of
the major obstacles when working with flexible ob-
jects. Even though reinforcement learning has been
shown to solve diverse tasks ranging from control-
ling a quadruped robotic dog (Theodorou et al., 2010)
to playing the ball-in-a-cup game (Kober & Peters,
2009), flipping pancakes (Kormushev et al., 2010a),
weightlifting (Rosenstein et al., 2006), and perform-
ing archery (Kormushev et al., 2010b), towel fold-
ing offers different research challenges: learning for
two independent manipulators working cooperatively;
exploiting a temporally incoherent parameter space
(i.e. two or more successful folds can take a different
amount of time to perform); dealing with an action-to-
reward function composed of many-to-one mappings
(i.e. there are many different ways to appropriately
fold a towel). Due to the wide range of possible manip-
ulator movements that yield correct folds, we combine
human-to-robot imitation learning with reinforcement
learning to not only converge faster to a solution, but
also explore a wider range of the parameter space to
find the action most replicable on the robotic platform.
The contributions of this manuscript come from the
human imitations combined with reinforcement learn-
ing, its efficient processing, fast learning capabilities,
absence of a deformable object model, and applicabil-
ity to other problems exhibiting temporally incoherent
parameter spaces.

The rest of the paper is organized as follows. We start
by describing, in Section 2, related works relevant to
both our folding application and machine learning. A
formal description of the problem we are addressing
is given in Section 3, followed by our training data
acquisition and proposed approach in Section 4 and 5,
respectively. In Section 6, we present the experiments
performed on our robotic platform. We conclude the
paper with final remarks and future work in Section 7.
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2. Related Work

The problem of using robotic manipulators to fold de-
formable objects has been studied before, although it
has frequently relied on imperfect deformable object
models or highly specialized robots. A review of de-
formable object models is beyond the scope of this pa-
per, as is deformable one-dimensional object models,
but interested readers can examine (Gibson & Balk-
com, 1997) for more details. The robotics community
has devised its own deformable object model where
the object is decomposed into rigid links and foldable
creases, resulting in a well-understood kinematic de-
scription. This simplified representation has been suc-
cessfully applied to metal bending processes (Gupta
et al., 1998), carton folding (Lu & Akella, 2000), pa-
per craft (Song & Amato, 2004), and towel folding
(Balaguer & Carpin, 2010). Each aforementioned ap-
plication has drawbacks, however, in that they do not
generalize well (Gupta et al., 1998; Balaguer & Carpin,
2010), or do not take into account the actuating robot
when choosing a folding sequence using path planners
like PRMs (Song & Amato, 2004) or RRTs (Lu &
Akella, 2000). The kinematic representation is only
suitable for deformable objects that retain their shape
to a certain extent (e.g. metal) and cannot be used ef-
fectively for highly deformable objects. More practical
robot systems have been designed for origami (Balk-
con, 2004) and T-Shirt (Bell & Balkcom, 2010) folding.
These robots are engineered for their specific tasks,
however, and would be unsuitable for service robotics
where one robot is tasked with highly heterogeneous
assignments. The state of the art in folding comes
from Abbeel et al. who have demonstrated the fold-
ing of towels (Maitin-Shepard et al., 2010) and clothes
(Van Den Berg et al., 2010). Their work, however, de-
pends on a parameterized shape model (Miller et al.,
2011) created by a human and, as such, does not nec-
essarily generalize to pieces of clothing that were not
already parameterized. Additionally, the folding se-
quences are either pre-programmed or need to be en-
tered by a user.

Typical off-the-book gradient-based policy learning
approaches to learning (Sutton & Barto, 1998) have
enjoyed only limited use in the robotics commu-
nity, mainly due to the lack of adaptability to high-
dimensional control and the manual parameter-tuning
of the learning rate. Theodorou et al. realized these
problems and implemented a reinforcement learning
algorithm called Policy Improvements with Path In-
tegrals (PI2) (Theodorou et al., 2010). The authors’
algorithm is capable of learning parameterized policies
by using stochastic optimal control with path integrals.
PI2 does not require parameter tuning, although it

requires an initial seed behavior that might be diffi-
cult to obtain, and works well with high-dimensional
data, as exemplified by the learning of how to jump
as far as possible on a quadruped robotic dog. Pol-
icy learning by Weighting Exploration with Returns
(PoWER) (Kober & Peters, 2009) also solves the
same problems seen in gradient-based policy learn-
ing and is thus far one of the leading algorithms
when it comes to reinforcement learning for manip-
ulation. Indeed, within a very short time, it has been
applied to a great number of heterogeneous applica-
tions including the ball-in-a-cup task (Kober & Peters,
2009), flipping pancakes (Kormushev et al., 2010a),
and performing archery (Kormushev et al., 2010b).
PoWER is based on Expectation-Maximization, ex-
ploits a weighted sampling technique for exploration
of the parameters space, and only requires an example
motion to bootstrap the algorithm.

In previous works, the line between imitation and re-
inforcement learning is often blurred. Our definition
of imitation learning, and the nomenclature used in
this paper, follows that of Schaal et al. as “a com-
plex set of mechanisms that map an observed move-
ment of a teacher onto one’s own movement appa-
ratus” (Schaal et al., 2003). The distinct features
between the two are that reinforcement learning ex-
ploits a trial-and-error methodology whereas imitation
learning does not. Consequently, imitation learning
requires multiple sample demonstrations in order to
learn something. Related works on imitation learn-
ing differ greatly from our approach since we focus
on imitation for the purpose of reinforcement learn-
ing. Interested readers should see (Schaal et al., 2003)
for a good review of imitation learning techniques in
robotics.

3. Problem Definition

The problem we aim to solve is to fold a towel symmet-
rically, where one half of the towel is folded on top of
the other. Evidently, there are many ways that such a
task can be performed and we choose to follow what we
refer to as a momentum fold, where the force applied
to grasping points on the towel is used to give momen-
tum to the towel and lay half of it flat on the table (see
Figure 1). We note that the momentum fold is used
to make sure that half of the towel lays flat on the
table and, as such, this is the motion we are trying to
learn. Once half of the towel lays flat on the table, we
can straightforwardly apply motion planning to finish
the fold, in a similar fashion to (Balaguer & Carpin,
2010). While the majority of previous works utiliz-
ing reinforcement learning bootstrap their algorithm
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Figure 1. Two different, yet successful, momentum folds demonstrated by a human to the robot.

using kinesthetic teaching (i.e. having a human per-
form actions directly on a gravity-compensated robotic
manipulator and recording the parameters from the
robot), the fact that we are dealing with two manipula-
tors renders this method impractical, if not impossible.
Consequently, a human demonstrates an appropriate
folding motion to the robot, two examples of which
are shown in Figure 1. We assume that the towel can
be picked by the robot and put into a starting posi-
tion similar to the one in the first frame of Figure 1.
This preliminary step has been previously solved by
Towner et al. (Cusumano-Towner et al., 2011), so it is
safe to assume this is a good starting configuration. It
is worthwhile to note that we are faced with the prob-
lem of temporally incoherent motion sequences. This
means that multiple - yet equally valid - folding mo-
tions will take different amounts of time to complete.

We designed and implemented a hybrid method that
incorporates imitation and reinforcement learning.
There are two reasons for incorporating imitation
learning. First, from an algorithmic standpoint, ex-
ploiting knowledge acquired from human imitations
can drastically reduce the parameter search space that
the reinforcement learning algorithm has to explore, as
will be shown in subsequent sections. Indeed, search-
ing the parameter space based on previously-acquired
rewards is both time-consuming and unnecessary and
we harness the power of imitation learning to make
the search more efficient. Second, from a more prac-
tical perspective, we cannot use kinesthetic teaching
for folding applications. Since we have to use a human
demonstrator and not all motions performed by a hu-
man will be replicable on a robot due to mechanical
constraints, it is beneficial to acquire multiple demon-
strations and learn from them.

4. Training Data for Imitation Learning

The demonstrator’s goal is to acquire action-
observation pairs that produce good folding motions

by performing momentum folds, as exemplified in Fig-
ure 1. In order to facilitate the collection of actions and
observations, we use a motion capture system along
with a towel comprised of reflective markers that can
be tracked. Formally, the i-th observation sequence
Oi is comprised of the observation’s time and of the
Cartesian coordinates for the 28 markers at each time
step of the motion. Similarly, the i-th action sequence,
θi, contains the trajectories of the two manipulator (or
human) control points.

We use data captured at 30 Hz, along with an av-
erage folding length of approximately 5 seconds, to
dictate the number of time frames in our sequences
(30 × 5 = 150). Even though all examples have the
same number of time frames, the time step between
every example’s time frame is different, thus account-
ing for temporal incoherence. The number of time
frames (150), along with the data recorded for each
observations and actions, defines the size of our vec-
tors, namely Oi ∈ R12750 and θi ∈ R1050. We collect 80
different folding sequences for our training data, which
create our training data set where Ot ∈ R80×12750 and
θt ∈ R80×1050.

5. Proposed Approach

5.1. Reward Function

The reward function R(Ot, Oc) computes the reward
for a new observation Oc based on all the observations
Ot acquired during our human training session. Its
pseudo-code is shown in Algorithm 1. We use Oi ∈ Ot
(line 2) to indicate that we pick the i-th sample from
Ot. We then extract the data points of the last time
frame for the training sample and current observation
(line 3 and 4). The Iterative Closest Point (ICP) al-
gorithm is then applied to both data points, returning
the average error (line 5) in millimeters. We repeat
these steps for each training data sample and retain the
smallest average error. Our reward is then the expo-
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nential function of the negative smallest average error
in decimeter. The reward function effectively finds the
best match between the current observation and any
training observations, returning a pseudo-probability
indicating how good the match is.

Algorithm 1 Computation of R(Ot, Oc)

1: minAvgError ← 1000
2: for all Oi ∈ Ot do
3: Training ← LastFrame(Oi)
4: Current← LastFrame(Oc)
5: AvgError ← ICP(Trainning, Current)
6: if AvgError ≤ minAvgError then
7: minAvgError ← AvgError
R(Ot, Oc) = exp(−minAvgError/100)

5.2. Imitation Learning

We use imitation learning as a two-layer hierarchical
approach to reduce the search space of the reinforce-
ment learning algorithm. In the initial exploratory
layer we use training data to let the robot execute
a set of diverse folding sequences. Next, in the ex-
pansion layer we expand the search to motions sim-
ilar to the best one that was found during the ex-
ploratory layer. In other words, we explore the ac-
tion space based on human demonstrations, the best
results of which will be used as seeds to the rein-
forcement learning algorithm. The exploratory layer’s
aim is to explore and find different motions in the
trained action space, θt. Since we cannot execute
all the trained motions, we apply k-means cluster-
ing, using k = 10, implicitly finding the most di-
verse set of 10 training motions. As a result, we
have a set, θExplore = [θExplore1 θExplore2 . . . θExplorek ]

with θExplorei ∈ θt. We let the robot execute each

encoded trajectory, θExplorei , record its corresponding

observation, OExplorei , and calculate the motion’s re-

ward using RExplorei = R(Ot, OExplorei ). In the expan-
sion layer, the action space is further explored start-
ing with the best folding motion that the robot pro-
duced, θExploreBest , based on the collected rewards in the
exploration layer. We train a learning algorithm us-
ing our training observations, Ot, and actions, θt, to
learn the function f : Oi → θi. In other words, given
an observation sequence Oi we want to find its corre-
sponding action θi. We apply PCA to our observation
data, Ot, which leads to a new observation data set,
Ôt, projected in a lower-dimensional subspace where
Ôt ∈ R80×29. Learning is achieved by using Ôt with
Radial Basis Functions (RBF), since we empirically
determined that it yields better accuracy and trained
faster than Neural Networks (NN), ν Support Vector

Regression (ν-SVR), and ε Support Vector Regression
(ε-SVR), as shown in Figure 2. The average learning
error is very low, 0.6767cm, which is much less than
the mechanical inaccuracy of the manipulator we use.
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Figure 2. Figure 2(a) and 2(b) show the accuracy and
training time for the NN, RBF, ν-SVR, and ε-SVR learning
algorithms for both the dimensionally-reduced data (29)
and the full data (12750). The reader shall note that we
use log-scale for the Y-axis of Figure 2(b) because the val-
ues varied from more than 40 minutes to less than a second.

The RBF requires an observation as input and out-
puts the action matching that observation. Conse-
quently, we need a process that generates a new ob-
servation, which is then fed to the RBF. To gener-
ate new observations, we fit a Gaussian distribution
to the training data and sample from it. The process
generates a new action, θExpands , using Algorithm 2.
The time check on line 7 of the algorithm is performed
to compensate for the temporal inconsistencies inher-
ently encoded in our training data, where two valid
folds can take a different amount of time to execute.
We also use the motion’s execution times to increase
the likelihood that generated actions will be similar
to θExploreBest . We run Algorithm 2 l times, resulting

in θExpand = [θExpand1 θExpand2 . . . θExpandl ]. In simi-
lar fashion to the exploratory layer, we let the robot
execute each encoded trajectory, θExpandi , record its

corresponding observation, OExpandi , and calculate the

motion’s reward using RExpandi = R(Ot, OExpandi ).

Algorithm 2 Expand(Ôt, θExploreBest , RBF, ε)

1: n = NumColumns(Ôt) // n = 29 in our case

2: Ôt ∼ [Ôt1 Ôt2 . . . Ô
t
n]

3: µ = [E[Ôt1] E[Ôt2] . . . E[Ôtn]]

4: Σ = [Cov(Ôti , Ô
t
j)]i=1,2,...,n;j=1,2,...,n

5: repeat

6: Sample Ôs from f(x)

s.t. f(x) = 1
(2π)n/2|Σ|1/2 e

(− 1
2 (x−µ)T Σ−1(x−µ))

7: until |Time(Ôs)-Time(θExploreBest )| ≤ ε
8: θExpands =RBF(Ôs)
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5.3. Reinforcement Learning

We finalize the algorithm using a modified version of
the state-of-the-art reinforcement algorithm PoWER
(Kober & Peters, 2009). The process is iterative and
the action performed at time n is updated to produce
a new action θn+1 for the next rollout. The process
is repeated until convergence, which we choose to be
when the last three rollouts’ rewards are within 0.1%
of each other. PoWER’s original update function does
not work for our application, so we modify it to be

θRLn+1 = θRLn +
(
θTop − θRLn

) [
R(Ot, OTop)−R(Ot, On)

]
where Top is the index of the action with the best re-
ward among [θExploreBest θExpand1 . . . θExpandl θRL1 . . . θRLn−1].
The update function is modified to account for two
major issues that occur when using PoWER’s unmod-
ified update function. Firstly, we do not use impor-
tance sampling because different folds lying in differ-
ent regions of the action space can yield similarly high
rewards, resulting in poor and slow learning perfor-
mance. Additionally, small potential time inconsisten-
cies between multiple high reward actions can quickly
lead the exploration into an action space region that is
either not executable by the robot or does not resem-
ble a folding motion. Secondly, we include the reward
of the last rollout, R(Ot, On), to influence the speed
of the exploration. This method allows for a fine-grain
search when the current action’s reward is close to the
best action’s reward. Conversely, the further our cur-
rent action’s reward is from the best action’s reward,
the more space we cover during the update step.

6. Experimental Results

We present a real-world evaluation of the proposed
algorithm on our robotic platform. The task of the
robot is to symmetrically fold a thin hand-towel that
is both light and highly susceptible to air flow resis-
tance. The exploratory and expansion layers of the
algorithm operate in constant time, since they always
yield the same number of actions to be performed by
the robot. Specifically, we always run the exploratory
layer 10 times and the expansion layer 5 times. Once
all 15 motions have been played back on the robot,
the reinforcement learning iterates until convergence,
which we define to be when the last three rewards are
all within 0.001 of each other. Figure 3 shows the
resulting rewards for a learning session. In the ex-
ploratory and expansion stages of the algorithm, the
rewards oscillate, in no particular order since the ac-
tions are independent of each other, as the robot tries
to find a good seed for the reinforcement learning al-
gorithm. The reinforcement algorithm converges in

4 steps since high-quality motions were found during
the exploratory and expansion stages of the algorithm.
Figure 4 shows some rollouts performed by our robotic
platform. We invite readers to go to our website1 for
videos, including the human demonstrations and tri-
als, along with the data sets used in the paper.
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Figure 3. Rewards given to the robot for each rollout.

7. Conclusions and Future Work

We have shown that the combination of imitation and
reinforcement learning provides a notable benefit to
learning complex tasks. Indeed, once the exploratory
and expansion steps are completed with the help of im-
itation learning, the reinforcement learning algorithm
converges extremely quickly thanks to a very good
starting seed. The approach is especially suited for
tasks with different but equally-appropriate ways of
solving them, where human-like motions are desirable,
or where kinesthetic learning is impractical or impos-
sible (e.g. when using two or more manipulators).

Acknowledgments

This research is partially supported by the National
Science Foundation under grant BCS-0821766.

References

Balaguer, B. and Carpin, S. Motion planning for coop-
erative manipulators folding flexible planar objects.
In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 3842–3847, 2010.

Balkcon, D. Robotic Origami Folding. PhD thesis,
Carnegie Mellon University, 2004.

Bell, M. and Balkcom, D. Grasping non-stretchable
cloth polygons. International Journal of Robotics
Research, 29(6):775–784, 2010.

1http://robotics.ucmerced.edu/Robotics/ICML2011/



An hybrid approach for robots learning folding tasks.

Figure 4. First 2 sequences received rewards of 0.57 and 0.94. The final motion is shown on the last sequence.

Cusumano-Towner, M., Singh, A., Miller, S., O’Brien,
J., and Abbeel, P. Bringing clothing into desired
configurations with limited perception. In IEEE
International Conference on Robotics and Automa-
tion, pp. 3893–3900, 2011.

Gates, B. A robot in every home. Scientific American
Magazine, December:58–65, 2006.

Gibson, S. and Mirtich, B. A survey of deformable
modeling in computer graphics. Technical report,
Mitsubishi Electric Research Laboratories, 1997.

Gupta, S., Bourne, D., Kim, K., and Krishnan, S. Au-
tomated process planning for robotic sheet metal
bending operations. Journal of Manufacturing Sys-
tems, 17(5):338–360, 1998.

Kober, J. and Peters, J. Learning motor primitives
for robotics. In IEEE International Conference on
Robotics and Automation, pp. 2112–2118, 2009.

Kormushev, P., Calinon, S., and Caldwell, D. Robot
motor skill coordination with em-based reinforce-
ment learning. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 3232–
3237, 2010.

Kormushev, P., Calinon, S., Saegusa, R., and Metta,
G. Learning the skill of archery by a humanoid robot
icub. In IEEE/RAS International Conference on
Humanoids Robots, pp. 417–423, 2010.

Lu, L. and Akella, S. Folding cartons with fixtures: a
motion planning approach. IEEE Transactions on
Robotics and Automation, 16(4):346–356, 2000.

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J.,
and Abbeel, P. Cloth grasp point detection based

on multiple-view geometric cues with application to
robotic towel folding. In IEEE International Con-
ference on Robotics and Automation, pp. 2308–2315,
2010.

Miller, S., Fritz, M., Darrell, T., and Abbeel, P.
Parametrized shape models for clothing. In IEEE
International Conference on Robotics and Automa-
tion, pp. 4861–4868, 2011.

Rosenstein, M., Barto, A., and Van Emmerik, R.
Learning at the level of synergies for a robot
weightlifter. Robotics and Automation Systems,
54(8):706–717, 2006.

Schaal, S., Ijspeert, A., and Billard, A. Computational
approaches to motor learning by imitation. Philo-
sophical Transaction of the Royal Society of Lon-
don: Series B, Biological Sciences, 358(1431):537–
547, 2003.

Song, G. and Amato, N. A motion planning ap-
proach to folding: From paper craft to protein fold-
ing. IEEE Transactions on Robotics and Automa-
tion, 20(1):60–71, 2004.

Sutton, R. and Barto, A. Reinforcement Learning: an
Introduction. MIT Press, 1998.

Theodorou, E., Buchli, J., and Schaal, S. Reinforce-
ment learning of motor skills in high dimensions: a
path integral approach. In IEEE International Con-
ference on Robotics and Automation, pp. 2397–2403,
2010.

Van Den Berg, J., Miller, S., Goldberg, K., and
Abbeel, P. Gravity-based robotic cloth folding. In
International Workshop on “The Algorithmic Foun-
dations of Robotics” at WAFR, 2010.


