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Abstract

Current work in robotic imitation learning
uses successful demonstrations of a task per-
formed by a human teacher to initialize a
robot controller. Given a reward function,
this learned controller can then be improved
using techniques derived from reinforcement
learning. We instead use failed attempts,
which may be more plentiful, to initialize our
controller and, taking them as illustrations of
what not to do, deliberately generate behav-
iors that differ from the human’s.

1. Introduction

Given a physically capable robot, Robot Learning
from Demonstration (RLfD) seeks to generate au-
tonomous controllers from observation instead of pro-
gramming (Argall et al., 2009). Current state of the
art techniques first use one or more successful execu-
tions of a task performed by a human teacher to ini-
tialize the controller and then use an explicit reward
function in a self-improvement phase to optimize the
controller via robot practice.

Instead, we seek to initialize our learning by observing
failed attempts on the part of the human. In doing so
we are inspired by Meltzoff (1995), who demonstrated
that human babies are capable of learning tasks from
only observing failed executions. Part of our inspira-
tion also comes from the fact that in demonstrating
a task to a robot, the human may generate several
failed trials before providing one suitable for success-
based RLfD. This data is usually discarded, and the
amount of time spent acquiring it is unreported. How-
ever, by utilizing this data we may be able to improve
learning efficacy when we consider not only the time
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spent by the robot learning (which may be greater
when learning from failure), but also the time spent
demonstrating by the human (which may be less when
failed demonstrations are allowed).

In learning from failure, we make two assumptions:

1. The human is attempting to perform the task.

2. The human attempts to correct for failures.

These two assumptions lead us to an approach to the
credit assignment problem, by positing that the vari-
ance between failed demonstrations is indicative of
how correct different portions of the demonstration
are. If all demonstrations agree on a part of the be-
havior (low variance), we take it that it is likely to be
performed correctly. On the other hand, if all demon-
strations disagree on a part (high variance), we as-
sume that it is likely to be incorrectly performed in all
of them, and the multiple errors indicate the human’s
intuition as to what values should be explored.

2. Models

We model motions as Autonomous Dynamical Systems
(ADS) (Hersch et al., 2008) where velocity is computed
as a function of the current position: ξ̇ = f(ξ|θ). The
parameters to this function θ = {K, {ρk, µk,Σk}Kk=1}
define the Gaussian Mixture Model (GMM) distribu-
tion over the joint:

P (ξ̇, ξ|θ) =

K∑
k=1

ρkN (ξ̇, ξ|µk,Σk) (1)

where the priors (ρk) sum to one and N is the normal
distribution with mean µk and variance Σk. These pa-
rameters are fit to demonstrated state-velocity pairs
using weighted versions of the Expectation Maximiza-
tion (Neal & Hinton, 1998) and Bayesian Information
Criterion techniques (Hu & Xu, 2004).
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(a) Flip Up (b) Basket

Figure 1. The FlipUp Task (left): Get the foam block to stand on end. The Basket task (right): Launch the ball into the
basket. Shown are successful performances learnt from failure

New trajectories are generated from an initial state ξ0
by computing the velocity ξ̇0 = f(ξ0|θ), moving with
that velocity, and repeating to quiescence or timeout.

2.1. PoWER

The PoWER (Policy learning by Weighting Explo-
ration with the Return) algorithm of Kober & Pe-
ters (2010) generates exploratory θ′ given the N most
highly rewarded previously tried parameters and their
rewards {φn, Rn}Nn=1. The mean parameters maximize
a lower bound on the expected reward:

θ̄ =
1∑N

n=1R
n

N∑
n=1

Rnφn (2)

and are corrupted by mean-zero Gaussian noise inde-
pendently on each parameter, θ′ ∼ N (θ̄, σ2I).

Generated velocities are the expectation of the condi-
tional distribution, ξ̇ = f(ξ|θ) = E{P (ξ̇|ξ, θ)}).

2.2. Donut

Grollman & Billard (2011) present an alternative
method of generating motions from a GMM, specif-
ically designed for the failed demonstration case. It
replaces each of the conditional Gaussian distribu-
tions N (ξ̇|ξ, µk,Σk) with a so-called Donut distribu-
tion, D(ξ̇|ξ, µk,Σk, ε). This distribution is a center-
off distribution whose width is controlled by the addi-
tional exploration parameter (ε) up to a maximum λ∗

as shown in Figure 2. The velocity for a given state is:

ξ̇ = f(ξ̇|ξ, θ) = argmaxξ̇

K∑
k=1

ρkD(ξ̇|ξ, µk,Σk, ε) (3)

and found by gradient ascent (starting at the current

ξ̇). Exploration is set as ε = 1− (1 + ||V {ξ̇|ξ, θ}||)−1.
By this method, areas that are consistent across
demonstrations are replicated, while those that are
varied by the demonstrator are explored more.

We extend this method here to incorporate reward in-
formation by weighing each datapoint in a trajectory
(ξst , ξ̇

s
t ) by the reward for the entire trajectory, Rs (as-

sociated with parameters θs). We then re-estimate
parameters θS+1 from all of the reward-weighted dat-
apoints using weighted EM. We do not re-estimate K
for a fairer comparison with PoWER.

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε = 0

ε = 0.25

ε = 0.5

ε = 0.75
ε = 1

ξ̇

P
(ξ̇
)

 

 

N (ξ̇, 0, 1)

D(ξ̇, 0, 1, ǫ)

Figure 2. The Donut distribution for various values of ε.
Also shown is the Normal distribution for comparison.
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3. Experiments

We compare PoWER and Donut on two robot tasks,
shown in Figure 1. In the FlipUp task (Figure 1(a)) we
consider two failure cases: If the block does not pass
the target position and falls back, reward is measured
as R = exp(−argminγt |γt|), with γ being the angle
of the block with respect to the surface normal of the
table. If the block instead passes to the other side,
reward is measured as R = exp(−6|γ̇t∗ |), where t∗ is
the time at which the block passes the upright position.

For the Basket case (Figure 1(b)), reward is computed
as R = exp(−|y|), where y is the vertical offset of the
ball from the lip of the basket when it makes contact
with the wall. For both rewards the necessary infor-
mation is extracted from a fast stereo vision pair.

In our experiments, we initialize the GMM for each
task with two failed kinesthetic demonstrations. The
robot then generates trials autonomously, and a hu-
man observer stops it when success is achieved. Our
results are summarized in Table 1, showing the means
and standard deviations of the number of trials to
achieve success over multiple initial training sets (10
for FlipUp, 3 for Basket). We also provide averages
over multiple humans for comparison.

4. Discussion and Future Work

Analyzing our results, we see only minor differences in
the average number of trials to succeed in both algo-
rithms. Where we do find a difference, however, is in
the variance, that of Donut is nearly an order of mag-
nitude smaller than that of PoWER. We believe this
result is due to the targeted method by which Donut
explores. While PoWER varies all portions of the be-
havior equally, Donut instead focuses on the areas of
unsurity in the demonstration. A similar behavior in
PoWER may be possible using alternate exploration
parameters, perhaps by initializing them based on the
demonstration variance.

Looking forward, we note that currently, PoWER op-
erates on the parameters of a motion, while Donut
works directly on generated velocities. However,
PoWER itself can be viewed as building a GMM in
the parameter space, so we can consider lifting Donut
to work in the parameter space instead. Doing so
should allow us to work in higher dimensional spaces,
and also address two issues with the current approach:
the time consuming gradient ascent step, and the non-
guarantee of smooth motions.

FlipUp Basket

Donut 4.30± 0.48 7.67± 0.58
PoWER 4.60± 2.17 11.00± 5.29
Human 5.2± 3.11 3.50± 1.73

Table 1. Summary of results
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