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Abstract
Accurately reasoning about agents’ actions in
strategic settings is a challenging artificial in-
telligence task. Many difficulties in learning to
perform such reasoning arise due to the uncer-
tainty in both agents’ motives and the strategic
games being played. In this paper, we address
the problem of learning from observations of the
agents’ behavior in some games to predict play
in different, but related, games. We introduce
a deviation-based strategy prediction approach
that, by also using game outcome features to de-
scribe different games in a common language,
enables generalized strategy learning.

1. Introduction
Accurate predictions of the behavior of multiple agents in
strategic settings are needed for many artificial intelligence
applications, including opponent modeling, mechanism de-
sign, and behavior imitation tasks. There are two sources
of information transfer to enable a predictor to perform this
task: probability (similar behavior in similar situations)
and utility (similar payoffs in similar situations). Past re-
search on predicting game strategies has primarily focused
on using probability-based transfer on games with known
payoffs (Altman et al., 2006; McKelvey & Palfrey, 1995;
Wright & Leyton-Brown, 2010) or learning utilities that ra-
tionalize strategies under assumed equilibria (Yang, 2009).
New machine learning approaches using both sources of
transfer are needed to enable prediction in more general
settings.

A number of difficulties exist for the predictor in more gen-
eral settings. First, the payoffs motivating observed behav-
ior are generally unknown. Second, agents may appear to
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behave irrationally or inconsistently to the predictor due to
limited game description availability for the learner. Third,
the games of interest may have substantial structural differ-
ences (e.g., different actions, number of players) and strate-
gic differences (e.g., desirabilities of outcomes) from one
another.

To overcome these difficulties, we augment ideas from sta-
tistical machine learning for reasoning about uncertainty
with game-theoretic concepts that explain strategic behav-
ior. More specifically, our approach: (1) Recasts games
into a feature-based perspective, expanding utility from
a single number to outcome features—sets of variables
that characterize an outcome in a language common across
games; (2) Uses feature-based deviation regret-matching
constraints to provide game-theoretic guarantees for pre-
dicted strategies relative to demonstrated strategies; and
(3) Provides a strong predictive performance guarantee
through its use of the principle of maximum entropy.

Combining these ideas, our approach, maximum entropy
deviation regret matching, uses both sources of transfer—
probability and utility—to enable strategy learning across
all games sharing a common set of outcome features.
We provide a set of experiments that demonstrate the ap-
proach’s abilities to address the difficulties of this predic-
tion task.

2. Preliminaries
We begin with a review of game theory concepts that our
work builds upon and a discussion of related work on learn-
ing game strategies.

2.1. Games, strategies, deviations, and regrets

The canonical game setting, the normal-form game, is a
single-step game that is defined by the payoffs received by
each agent resulting from their joint behavior.
Definition 1. A normal-form game, G = (N,A,Payoff),
is comprised of: a set of players, N ; a set of joint ac-
tions, A; and a tuple of payoffs, Payoffi(a) : A 7→ R,
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specifying the utility of game outcome a ∈ A to player
i ∈ N . Each player controls one component of the action
a = (a1, a2, . . .) with ai ∈ Ai.

Other players’ actions, excluding player i’s, are conve-
niently denoted as a−i ∈ A−i and payoffs are then also de-
noted Payoffi(ai, a−i). A strategy is a probability distribu-
tion over the joint-actions, P (A), with specific action prob-
abilities expressed as P (a) or P (ai, a−i). Strategies can
be independent, and thus factor as P (a) =

∏
i∈N P (ai),

or coordinated. Conceptually, coordinated behavior could
arise from an external signaling mechanism, e.g., a traffic
light; however, no external moderator is needed so long as
the players have access to a public communications chan-
nel (Dodis et al., 2000).

A deviation policy, φ(a′i|ai) : Ai 7→ ∆Ai , is an important
conceptual tool in game theory that defines a probabilistic
mapping over A describing alternate behavior for player i
when prescribed action ai. It is useful for assessing ratio-
nality and defining equilibrium solution concepts:
Definition 2. A strategy, P (A), is said to have no-
regret with respect to deviation policy set Φ if employ-
ing any deviation policy provides no expected gain, i.e.,
∀i, φj ∈ Φ Regretφji (P (A)) ≤ 0 where (denoting proba-
bilistic expectations as: EP (A)[f(a)] =

∑
a∈A P (a)f(a)):

Regretφji (P (A)) , (1)

EP (A)

[ ∑
a′i∈Ai

φj(a
′
i|ai) Payoffi(a

′
i, a−i)− Payoffi(a)

]
.

By considering the set of all deviation policies that switch
from one action to another, the correlated equilibrium so-
lution concept (Aumann, 1974) is obtained. By restricting
the set of deviation policies, other equilibrium concepts are
obtained as well: e.g., deviations that switch uncondition-
ally to a fixed action lead to a minimax optimal Nash equi-
librium in a zero-sum game (Nash, 1951).

2.2. Related work

Unfortunately, strategies employed by people often are
not consistent with Nash or correlated equilibrium solu-
tion concepts for the designed payoff functions of games.
Much research in strategy prediction has investigated re-
laxations of the rationality constraints of those equilibria to
improve predictive performance. For example, the quantal
response equilibrium (McKelvey & Palfrey, 1995) intro-
duces a learned parameter that controls the degree of ratio-
nality of strategies with convergence to Nash equilibrium at
one extreme. Many other techniques have been developed
for predicting strategies in games with known payoffs (Alt-
man et al., 2006; Cooper & Kagel, 2003; Halpern & Pass,
2009; Wright & Leyton-Brown, 2010).

Other strategy prediction techniques discard the game-

theoretic notions of payoff, equilibrium, and regret entirely,
and instead directly estimate the strategy from demon-
strated behavior. For instance, case-based reasoning tech-
niques have been employed to transfer observed computer-
game strategies to new scenarios (Sharma et al., 2007). Di-
rect policy estimation approaches have the advantage of be-
ing applicable in games where the payoffs are unknown or
difficult to specify. However, generalization to games with
structural differences, such as additional players with novel
motives or different sets of actions, is difficult without a
model capable of deeply learning the underlying motives
of observed behavior.

In contrast to these techniques, our approach predicts
strategies in different games by learning underlying
deviation-based payoff functions that best explain observed
behavior. Thus, it is capable of good generalization across
games with structural and strategic differences without hav-
ing the benefit of known payoffs. We take inspiration from
recent research in imitation learning that learns a reward
function for Markov decision processes that best explains
sequences of behavior (Ziebart et al., 2008; Abbeel & Ng,
2004; Ziebart et al., 2010). These reward functions are
learned in terms of state-action features. We extend this
perspective to normal-form games by learning deviation-
specific payoff functions in terms of game outcome fea-
tures, capturing strategic properties of observed behavior.

Recent research taking the feature-based perspective for
behavior transfer in games relates the regret of a source
game (s) and a target game (t) with the same outcome fea-
ture set (Waugh et al., 2011). Specifically, this work re-
quires that a prediction Pt(A) have low regret for weights
where Ps(A) has low regret, or

∀w, max
i,φj∈Φt

Regretφji,w(Pt(A)) ≤ κ max
i,φj∈Φs

Regretφji,w(Ps(A)).

(2)

This approach does not benefit from knowledge of how
actions relate across two games and requires a convex op-
timization for each prediction. In contrast, the approach
introduced in this paper explicitly explains observed behav-
ior in terms of specific deviations to enable generalization
across different games and uses learned parameters corre-
sponding to deviations from a separate training phase with-
out additional optimization for predictions.

Elements of our approach and its motives have shaped
other previously developed techniques that relate to strate-
gic behavior, but with different purposes. Bayesian games
(Harsanyi, 1967) provide some payoff uncertainty by asso-
ciating a (well-specified) hidden type with each player that
determines the player’s payoff for each outcome, but this
uncertainty extends to the players within the game rather
than being restricted to the machine learner, as in our set-
ting. The principle of maximum entropy has been em-
ployed by the maximum entropy correlated equilibria (Or-
tiz et al., 2007) to obtain a unique strategy in normal-form
games with known payoffs.
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3. Strategy Learning and Prediction
In this section, we introduce our maximum entropy re-
gret matching (MaxEnt DRM) framework. We employ a
feature-based perspective that generalizes across games by
recasting regret in terms of outcome features. Then, we
combine feature-based performance constraints, based on
regret, with the principle of maximum entropy to obtain
strategy predictions that inherit performance guarantees.

3.1. Viewing games via outcome features

We consider games where outcomes are described by vec-
tors of outcome features, and the game’s payoffs, which
characterize the agents’ desires, are determined by weights
on these features.

Definition 3. The payoffs of an outcome-parameterized
normal-form game, G = (N,A, F,W ), are characterized
by: vectors of outcome features, F : N × A → RK (de-
noted as fi,a or fi,ai,a−i ), for each player i ∈ N and joint
action a ∈ A; and a vector of payoff outcome weights
wi ∈ W , associated with each player i ∈ N , such that:
Payoffi,w(a) = wT

i fi,a.

Outcome-parameterized normal-form games can be trans-
formed into standard normal-form games (Definition 1)
when features F and weights w are known. Simi-
larly, regrets (and equilibrium concepts) can be extended
to the feature-based payoff setting and are denoted as:
Regretφi,w(P ). However, we argue that the payoffs guid-
ing strategies are difficult for an observing learner to pre-
cisely know. Indeed, in human subject experiments where
we might expect that experimenter knows the exact pay-
offs, additional motives, such as maintaining a certain “im-
age” in negotiation-like games (e.g., that of a tough nego-
tiator or altruist), reciprocating perceived selfless actions,
and avoiding inequality have been shown to alter behav-
ior in ways that would not be expected if the given payoffs
were the sole factor underlying decisions (Gintis, 2009).

Feature incompleteness is another crucial prospect to con-
sider; for example, additional unknown outcome features
may exist that form the true payoff function governing ob-
served behavior, or the predictor’s features may be a noisy
approximation of the game’s true outcome features. Statis-
tical machine learning techniques are specifically designed
to address the uncertainty of such incomplete modeling
assumptions. However, the assumptions needed to make
these statistical machine learning techniques practical are
often difficult to combine with game-theoretic reasoning.
The aim of our approach, therefore, is to enable the com-
bination of statistical and game-theoretic reasoning, partic-
ularly in the transfer learning setting with incomplete fea-
tures.

When features characterize game outcomes across many
different games, cross-game learning can be beneficial even

when the actions of those games have no direct correspon-
dence. To provide an entirely feature-based view of ob-
served behavior that enables transfer, we redefine devia-
tions in terms of features as well, so that deviations in dif-
ferent games will relate.

Definition 4. A feature-based deviation policy is a devia-
tion policy φ(a′i|ai) = ϕ(F, ai, a

′
i) defined in terms of the

game outcome features F .

Thus, each feature-based deviation policies may be em-
ployed for any game that is characterized by the same set of
features. We aim to employ these policies to enable strat-
egy learning across games.

3.2. Feature-based regret matching

To generalize well from a small number of examples,
salient properties of observed behavior that compactly rep-
resent the distribution are necessary to enable generaliza-
tion and transfer across game settings. For single-agent,
decision-theoretic behavior, these properties are typically
associated with the reward of a decision process (Abbeel &
Ng, 2004). For the strategic settings, we advocate regret-
based properties.

A natural requirement for a strategy prediction P̂ (A) is that
it match regret (Equation 1) with the demonstrated strategy
P̃ (A) evaluated on any feature-based deviation policy φj
from some set Φ:

(∀i ∈ N,φj ∈ Φ) Regretφji,w∗(P̂ (A)) = Regretφji,w∗(P̃ (A)).

(3)

However, even if we assume that some true weights w∗
parametrize the payoffs, those weights are unknown to
us. To address this difficulty, our approach guarantees this
property for all possible weights w. This is accomplished
by the set of constraints in Theorem 1.

Theorem 1 (Deviation regret matching1). Regret match-
ing (based on Equation 3),

(∀w) Regretφji,w(P̂ (A)) = Regretφji,w(P̃ (A)) (4)

is guaranteed for all choices of feature weights w and any
deviation policy, φj ∈ Φ, if and only if the expected feature
differences that result from employing the deviation policy
matches under both strategy distributions:

EP̂ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a

′
i, a−i)− fi(a)


= EP̃ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a

′
i, a−i)− fi(a)

 . (5)

1The proofs of Theorems 1, 3, 4, and 5 are provided in the
supplemental appendix.
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These constraints are quite different from equilibrium con-
straints (Definition 2), which require that the behavior can-
not benefit from any deviation policy φ ∈ Φ. However,
they do ensure that a demonstrated equilibrium P̃ (A) is
maintained by P̂ (A) in source games.

Corollary 1. If P̂ (A) satisfies the constraints of Theorem
1 relative to distribution P̃ (A) then P̂ (A) and P̃ (A) have
exactly the same set of equilibrium outcome weights:

(∀w) (∀φj ∈ Φ, Regretφji,w(P̂ (A)) ≤ 0↔

∀φj ∈ Φ, Regretφji,w(P̃ (A)) ≤ 0).

That is, there are no weights w where either P̃ (A) or P̂ (A)
is in equilibrium and the other is not.

Importantly, though, since the features and deviation poli-
cies considered may only approximate the strategic con-
siderations of the game being played, weights providing
an equilibrium are not assumed. If demonstrated strategy
P̃ (A) is not in equilibrium for any choice of weights w,
these constraints assure P̂ (A) matches the same demon-
strated regrets.

Given demonstrated strategies from multiple games in
some set G, the previous guarantees can be easily extended
to be in terms of the average of regrets over all the games:
1
|G|
∑
G∈G Regretφj(G)

i,w (P̃G(A), G). For brevity, we do not
make this explicit in our notation.

Many potential estimated strategies P̂ (A) satisfy the con-
straints of Equation 5 (e.g., trivially, P̃ (A) does). How-
ever, most do not generalize well. A secondary criterion is
needed to select a strategy distribution with predictive qual-
ities in a way that leads to strategy transfer across games.

3.3. Maximizing entropy

The principle of maximum entropy (Jaynes, 1957) advo-
cates estimating a probability distribution by selecting the
distribution with the fewest additional assumptions possi-
ble beyond matching specified properties of empirical sam-
ples. The notion of additional assumptions is quantified
using Shannon’s information entropy (Shannon, 1948),
H(P (X)) , −

∑
x∈X P (x) log2 P (x).

For the deviation regret-matching strategy setting (Theo-
rem 1), the following optimization is prescribed by the
principle of maximum entropy.

Definition 5. A maximum entropy deviation regret-
matching strategy (MaxEnt DRM) for a set of deviation
policies, Φ, is a probability distribution further defined by:

P̂ME(A) , argmax
P̂ (A)

H(P̂ (A)) such that: (6)

(∀φj ∈ Φ) EP̂ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a

′
i, a−i)− fi(a)


= EP̃ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a

′
i, a−i)− fi(a)

 .
The maximum entropy approach provides a useful worst-
case predictive guarantee.

Theorem 2 ((Grünwald & Dawid, 2003)). A maximum
entropy distribution, P̂ME (Definition 5), minimizes the
worst-case predictive log-loss, EP̃ (A)[− log P̂ (a)], when

predicting an unknown empirical distribution P̃ (A) con-
strained so that distribution estimate P̂ (A) matches speci-
fied properties of P̃ (A).

This general result is the underlying motivation for many
state-of-the-art probabilistic techniques, such as logistic re-
gression, Markov random fields, and conditional random
fields (Lafferty et al., 2001).

3.4. MaxEnt DRM distribution

It is insightful to express the MaxEnt DRM strategy P̂ME

in terms of the Lagrange multipliers, θ, for the constraints
of Definition 5. These multipliers can be employed for
strategy transfer in any game with the same types of fea-
tures and deviation policies.

Theorem 3. The maximum entropy deviation regret-
matching strategy (Definition 5) has the following paramet-
ric form:

P (a)∝e
∑
φj,(i)∈Φ θ

T
j

(∑
a′
i
∈Ai

φj(a
′
i|ai) fi(a

′
i,a−i)−fi(a)

)
(7)

where model parameters {θj} are parameters causing the
distribution to satisfy the constraints of Definition 5.

Similar to the outcome-parameterized weights w (Defini-
tion 3), the MaxEnt DRM model’s parameters θ can be
loosely interpreted as specifying deviation-specific feature-
based payoffs. Under the assumption that the deviation
policies across games correspond to behavior with similar
outcome features with similar desirability, the model pro-
vides good generalization across different games.

3.5. Generalized deviation policies

Many types of feature-based deviation policies (Definition
4) exist. A key aspect to note is that the deviation policies
need not be accurate reflections of how an agent would ac-
tually choose to deviate. Indeed, deviation policies to ac-
tions that an agent would avoid are of significant impor-
tance for learning strategy estimates that similarly avoid
those particular actions. We discuss a few methods for con-
structing deviation policies in this section.
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When commonalities exist in the actions of all source and
target games, these can be encoded as features and used for
deviations. For example, a “walk away” action is typically
available in negotiations that prevents any deal from being
reached. A simple and natural deviation policy to consider
is the “always walk away” policy, which can be realized
using features by adding a single indicator function to game
outcomes for each player’s “walk away” action.

For coordinated behavior, conditional deviation policies are
also useful to consider. In our experiments, we employ a
general Gibbs measure to generate deviation functions2 of
the form:

φj(a
′
i|ai) ∝ e

EP̄j(A−i|ai)[α
Tfa′

i
,a−i

] (8)

where P̄ (a−i|ai) is some assumed distribution (e.g., uni-
form).

3.6. Learning algorithms

The coordinated formulation of our approach provides ad-
vantageous convexity properties (Theorem 4) that enable
efficient learning through well-studied gradient-based opti-
mization procedures.
Theorem 4. The log-likelihood function of the MaxEnt
DRM parameters θ (Equation 7) is convex.

Due to this convexity, the MaxEnt DRM model’s parame-
ters (i.e., the log-likelihood of Equation 7) can be optimized
using gradient-based techniques.
Theorem 5. The gradient for the MaxEnt DRM model’s
log-likelihood is: ∇θ logL(θ|P̃ ) ={

EP̃ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a

′
i, a−i)− fi(a)

−
EP̂ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a

′
i, a−i)− fi(a)

}

for the vector of parameters θj associated with deviation
policy φj(a′i|ai).

The corresponding gradient for demonstrated strategies
from multiple games can be obtained by simply adding to-
gether the sample-size-weighted gradients of each game.

Gradient-based parameter updates, θt+1 ← θt −
γt∇θlogL(θt|P̃ ), with an adaptive learning rate, γt, are
guaranteed to converge to the global optima as a conse-
quence of Theorem 4. When the space of actions (and pa-
rameters) is reasonably sized, the expectations can be com-
puted efficiently in a straight-forward manner according to

2Stochastic deviation policies do not provide more represen-
tational power than deterministic deviation policies. However, it
can be convenient to specify randomized deviation policies to re-
late different games.

Equation 7. Simulation-based approaches, e.g., Markov
chain Monte Carlo, can be employed to approximate those
expectations in large or infinite action spaces.

4. Experiments
We now perform strategy prediction experiments to investi-
gate the benefits of the MaxEnt DRM approach when learn-
ing to predict strategic behavior.

4.1. The treasure hunt coordination game

Treasure hunt games are a class of simultaneous two-player
game specified as GTH = ({ts}, {wi}, Theavy) in which
each player i chooses a treasure-hunting site, s ∈ S that
contains treasures ts that provide player-dependent utility
wT
i ts if collected. The game is strategic because players

split the treasures when they choose the same site, but are
able to collect heavy types of treasures from set Theavy that
require both players to move. The game is fully known
to each player3. To extensively investigate the predictive
capabilities of our approach, we employ a large amount of
synthetic strategy data rather than a small amount of human
subject strategy data.

Table 1. Payoff features for the two players in the coordinated
treasure hunting site selection problem with two sites. The payoff
for each player i is obtained from the dot product of the table vec-
tors with (w>i : 1ti /∈Theavy ; w>i : 1ti∈Theavy ), where “:” represents
the element-wise Frobenius product with the indicator function.

Site 1 Site 2

Site 1
(

t1/2
t1/2

)
,

(
t1/2
t1/2

) (
t1
0

)
,

(
t2
0

)
Site 2

(
t2
0

)
,

(
t1
0

) (
t2/2
t2/2

)
,

(
t2/2
t2/2

)

We generate strategy distributions P (A) using the (nearly)
convergent solution of a subgradient-based correlated equi-
librium solver. This is motivated by results showing sim-
ple adaptive strategies (such as no-regret learning) con-
verge to some subset of correlated equilibria (Gordon et al.,
2008). Depending on the players’ weights on different trea-
sures, many different interesting equilibria can result with
strategies known from classical games, such as Chicken,
the El Farol Bar Problem (Arthur, 1994), and Battle of
the Sexes. Cooperation—by mutually choosing to treasure
hunt together or alone and employing a randomized mecha-
nism for fairly resolving preferences for sites—is common.
However, adversarial behavior also arises when joining an-

3In our experiments, the treasures present in each site s, (i.e.,
elements of ts) are drawn i.i.d. from Bernoulli(0.5) as is whether
a particular type of treasure ti is “heavy” P (ti ∈ Theavy) = 0.5.
Players’ payoffs for different treasures are drawn i.i.d. from
Uniform[0, 1]. Except where noted, we consider the treasure hunt
game with 5 sites and 8 types of treasures.
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other player at a particular site would be unilaterally advan-
tageous.

4.2. Strategy prediction metrics and models

In the strategy prediction task, we consider sets of trea-
sure hunt games that differ only in the treasures present
at sites {ts}. The predictor can only “see” the treasure
types {ts} that are in set Tobs and has neither knowledge
of which types are heavy Theavy nor player utilities {wi}.
This is reflective of the strategy prediction setting in gen-
eral, where ulterior motives beyond those of a game’s de-
sign are known to influence behavior. Given strategy sam-
ples P̃ (a) drawn from P (a) from some games in this set,
the predictor must estimate the strategy P̂ (a) for withheld
games. The partial knowledge of the game and the non-
uniqueness of correlated equilibria make this a challenging
prediction task. We employ the Kullback-Leibler (KL) di-
vergence,DKL(P (A)||P̂ (A)), to assess the predictive per-
formance of P̂ (A). It measures the additional uncertainty
implied by using distribution P̂ (A) in place of distribution
P (A).

We compare the maximum entropy regret-matching ap-
proach against four other models: A Nearest Neighbor
model, where the strategy corresponding to the “closest”
source game, minG∈Gsource

∑
s ||t

G
s − tts||1, is predicted;

an Average Strategy model where the average of source
strategies 1

|G|
∑
G∈G PG(A) is predicted; a joint action lo-

gistic regression (Joint Logistic) model that assumes be-
havior is centrally (but suboptimally) chosen according to
distribution P (a) ∝ exp{

∑
i∈N θ

T
i fa,i} with learned util-

ity weights θ; and an opponent-oblivious logistic regres-
sion (Individual Logistic) model that ignores the strate-
gic behavior of the other players by assuming it is uni-
formly distributed over all actions, yielding distribution
P (ai) ∝ exp{θT

i

∑
a−i∈A−i fa}. We employ a weakly-

weighted Dirichlet prior (pseudo-count) of 0.02 over the
multinomial distributions of actions for the Nearest Neigh-
bor and Average Strategy approaches. The log-likelihoods
for the logistic models are convex functions of θ and are
optimized using standard gradient-based techniques.

4.3. Strategy prediction comparisons

We begin our experiments with idealized settings and then
introduce more challenging assumptions that characterize
the difficulties of the strategy transfer task. We randomly
draw source games and 100 target games from this class
of games and report the average KL-divergence between
P̂ (A) and P (A) using 10 repeated experiments with differ-
ent randomly drawn player outcome weight vectors. Thus,
each quantity reported in our experimental results is based
on 1,000 samples.

In our first set of experiments, we assume ideal
observability—of features and source strategies. We adjust

the number of source games to investigate the relation be-
tween the amount of available training data and the predic-
tive performance for our baseline and MaxEnt DRM mod-
els with two deviation policy set sizes, |Φ| = {2, 20}.

a.

b. c.

Figure 1. Predictive performance on: (a) withheld data in the
ideal observability setting, P̃ = P , Tobs = T for varying num-
bers of source games; (b) the perfect feature observation setting
(Tobs = T ) and a varying number of per-game observed strate-
gies (P̃ 6= P ); and (c) the imperfect feature observation setting
(Tobs ⊂ T, P̃ = P ).

As shown by the experiments (Figure 1a), baseline ap-
proaches operating directly on strategies (Nearest Neigh-
bor and Average Strategy) perform very poorly due to the
relatively large number of action combinations in the trea-
sure hunt game. Additionally, small differences in the
the allocations of treasures lead to significant differences
in strategies, making the distance-based approach inferior
to the simpler strategy averaging approach when provided
with limited amounts of training data. Of the two logis-
tic approaches, the joint logistic approach provides lower
loss than the individual logistic approach. This is reflec-
tive of the fact that many of the strategies generated for
the treasure hunt game possess a large degree of coordi-
nation. While providing better performance than the di-
rect strategy-based approaches, and attesting to the benefit
of utility-related parameter learning, neither the joint nor
the individual logistic regression approach outperforms the
MaxEnt DRM approach with either a small (2) or large (20)
number of deviation bases. Thus, the strategic considera-
tions of the MaxEnt DRM approach are validated on this
dataset.

Our second set of experiments relaxes the ideal observabil-
ity assumptions. We use a source size of 50 games and vary
the amount of observed sequences per game and then the
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number of features observed. The predictive performance
(Figure 1b-c) degrades in these settings, as expected. With
extremely little amounts of data (one strategy sample per
observed game), the joint logistic model outperforms the
MaxEnt DRM model, but this relationship quickly reverses
as the amount of data increases. In the visibility-varying
experiment, the MaxEnt DRM continues to perform best
for each amount of visible features.

Table 2. Transfer learning performance on qualitatively different
target game.

MaxEnt DRM Joint Logistic Ind. Logistic
KL 1.31 1.70 2.47

Our third and final experiment (Table 2) evaluates the pre-
dictive performance of each approach on a very differ-
ent target game setting with 8 treasure sites (instead of 5)
and a different per-site treasure probability, drawn from
Bernoulli(0.25). A source dataset of 50 games was em-
ployed. Note that direct strategy-based learning approaches
(Nearest Neighbor and Average Strategy) cannot be applied
due to the differences in source and target strategy spaces.
We find an even larger disparity between the MaxEnt DRM
approach and the joint logistic model in this scenario, fur-
ther demonstrating its value for generalized strategy pre-
diction.

5. Future Work
A number of future directions are encouraged by the prin-
cipled combination of game theory with machine learning
in this paper. More sophisticated deviation policy selection
is likely to prove fruitful, making the addition of search or
sparsifying regularization techniques one interesting direc-
tion for future investigation. Extension of this approach
beyond normal-form games to sequential games and exten-
sive form games is another important direction. Finally, we
plan to establish empirical validation of this approach on
real-world data—particularly on observed behavior where
game formulations do not yet exist.
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A. Proofs of Theorems

Proof of Theorem 1. First, note that:

wTEP (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a′i, a−i)− fi(a)


= EP (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) wTfi(a′i, a−i)− wTfi(a)


= Regretφji,w(P (A)).

Using this, we can easily show Equation 3 if Equation 5.
Multiplying both sides of Equation 5 by any wT, we have:

Regretφji,w(P̂ (A)) = Regretφji,w(P̃ (A)).

Next, we show not Equation 3 if not Equation 5 to complete
the proof. Assuming not Equation 5:

EP̂ (A)

 ∑
a′i∈Ai

φ(a′i|ai) fi(a′i, a−i)− fi(a)

 (9)

− EP̃ (A)

 ∑
a′i∈Ai

φ(a′i|ai) fi(a′i, a−i)− fi(a)

 6= 0.

That is, at least one entry, k, of this vector must be non-
zero. Let w′ = ek, where ek is the vector where the kth

entry is 1 and the others are 0. Multiplying Equation 9 by
w′T, we have:

Regretφji,w′(P̂ (A))− Regretφji,w′(P̃ (A)) 6= 0

⇒ ∃w : Regretφji,w(P̂ (A)) 6= Regretφji,w(P̃ (A)).

Proof of Theorem 3. First, we note that P̃ (A) is a feasi-
ble solution to the constraints of the convex optimization in
Definition 5. We restrict our consideration to mixed strate-
gies, which reside on the relative interior of the convex con-
straint set. Thus, by Slater’s condition, strong duality holds
and no duality gap exists.

Ignoring the probabilistic non-negativity constraint (which
will directly follow), the Lagrangian has the form:

Λ(θ, Z, P (A)) =H(P (A)) + Z
(

1−
∑

P (A)
)

+

EP (A)

∑
j

θT
j

∑
a′i

φj(a
′
i|ai) fa′i,a−i − fa

 .
Differentiating with respect to P (a) and pushing the addi-
tive constant term into Z we obtain:

− logP (a)− Z +
∑
j

θT
j

∑
a′i

φj(a
′
i|ai) fa′i,a−i − fa

 .

After equating to zero, we find the distribution form to be:

P (a) =
e
∑
j θ

T
j

(∑
a′
i
φj(a

′
i|ai) fa′

i
,a−i
−fa

)
Z

Proof of Theorem 4. This fact follows directly from con-
vex duality, discussed in the proof of Theorem 3.

Proof of Theorem 5. The log probability of a single
demonstrated action ã is:

log P̂ (ã) =
∑

φj,(i)∈Φ

θT
j

 ∑
a′i∈Ai

φj(a
′
i|ãi) fi(ã′i, ã−i)− fi(ã)


− log

∑
a

e
∑
φj,(i)∈Φ θ

T
j

(∑
a′
i
∈Ai

φj(a
′
i|ai) fi(a′i,a−i)−fi(a)

)
.

Differentiating with respect to θj , we have:

∂ log P̂ (ã)

∂θj
=

 ∑
a′i∈Ai

φj(a
′
i|ãi) fi(a′i, ã−i)− fi(ã)


−
∑
a∈A

P̂ (a)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a′i, a−i)− fi(a)


Thus, because logL(θ|P̃ (A)) = −

∑
a∈A P̃ (a) log P̂ (a):

∂ logL(θ|P̃ (A))

∂θj
=EP̂ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a′i, a−i)− fi(a)


− EP̃ (A)

 ∑
a′i∈Ai

φj(a
′
i|ai) fi(a′i, a−i)− fi(a)




