
Augmenting Reinforcement Learning with Human Feedback

W. Bradley Knox BRADKNOX@CS.UTEXAS.EDU

University of Texas at Austin, Department of Computer Science

Peter Stone PSTONE@CS.UTEXAS.EDU

University of Texas at Austin, Department of Computer Science

Abstract
As computational agents are increasingly used
beyond research labs, their success will depend
on their ability to learn new skills and adapt to
their dynamic, complex environments. If hu-
man users — without programming skills — can
transfer their task knowledge to agents, learn-
ing can accelerate dramatically, reducing costly
trials. The TAMER framework guides the de-
sign of agents whose behavior can be shaped
through signals of approval and disapproval, a
natural form of human feedback. More recently,
TAMER+RL was introduced to enable human
feedback to augment a traditional reinforcement
learning (RL) agent that learns from a Markov
decision process’s (MDP) reward signal. Using a
reimplementation of TAMER and TAMER+RL, we
address limitations of prior work, contributing in
two critical directions. First, the four successful
techniques for combining a human reinforcement
with RL from prior TAMER+RL work are tested
on a second task, and these techniques’ sensitivi-
ties to parameter changes are analyzed. Together,
these examinations yield more general and pre-
scriptive conclusions to guide others who wish
to incorporate human knowledge into an RL al-
gorithm. Second, TAMER+RL has thus far been
limited to a sequential setting, in which training
occurs before learning from MDP reward. We
modify the sequential algorithms to learn simul-
taneously from both sources, enabling the human
feedback to come at any time during the rein-
forcement learning process. To enable simulta-
neous learning, we introduce a new technique
that appropriately determines the magnitude of
the human model’s influence on the RL algo-
rithm throughout time and state-action space.
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1. Introduction
Computational agents may soon be prevalent in society,
and many of their end users will want these agents to learn
to perform new tasks. For many of these tasks, the human
user will already have significant task knowledge. Conse-
quently, we seek to enable non-technical users to transfer
their knowledge to the agent, reducing the cost of learning
without hurting the agent’s final, asymptotic performance.

In this vein, the TAMER framework guides the design of
agents that learn by shaping — using signals of approval
and disapproval to teach an agent a desired behavior (Knox
and Stone, 2009). As originally formulated, TAMER was
limited to learn exclusively from the human feedback.
More recently, TAMER+RL was introduced with the goal of
enabling the human feedback to augment a traditional rein-
forcement learning (RL) agent that learns from an MDP re-
ward signal (Knox and Stone, 2010). However, TAMER+RL
has previously only been tested on a single domain, and it
has been limited to the case where the learning from human
feedback happens only prior to RL: sequential TAMER+RL.
Using a reimplementation of TAMER and TAMER+RL, we
address these limitations by improving upon prior work in
two crucial directions.

First, in Section 3, we continue with the sequential
TAMER+RL approach, testing the four TAMER+RL tech-
niques that were previously found to be successful. We test
on two tasks — one identical to the single prior TAMER+RL
task and a new task. We also provide a novel examination
of each technique’s performance at a range of combination
parameter values to determine the ease of setting each pa-
rameter effectively, a critical aspect of using TAMER+RL al-
gorithms in practice that has been previously sidestepped.
Together, these analyses yield stronger, more prescriptive
conclusions than were possible from prior work. Two sim-
ilar combination techniques, for the first time, clearly stand
out as the most effective, and we consistently observe that
manipulating action selection is more effective than alter-
ing the RL update.

Second, in Section 4 we move from the sequential set-
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ting of first learning only from the human and then learn-
ing from MDP reward to learning from both simultane-
ously. The principal benefit of simultaneous learning is its
flexibility; it gives a trainer the important ability to step
in as desired to alter the course of reinforcement learning
while it is in progress. We demonstrate the success of the
two best-performing techniques from the sequential exper-
iments, action biasing and control sharing, in this simul-
taneous setting. To meet demands introduced by the si-
multaneous setting, we use a novel method to moderate the
influence of the model of human reinforcement on the RL
algorithm. Our method increases influence in areas of the
state-action space that have recently received training and
slowly decreases influence in the absence of training, leav-
ing the original MDP reward and base RL agent to learn
autonomously in the limit. Without this improvement, the
sequential techniques would be too brittle for simultaneous
learning.

2. Preliminaries
In this section, we briefly introduce reinforcement learning
and the TAMER Framework.

2.1. Reinforcement Learning

We assume that the task environment is a Markov decision
process (MDP) specified by the tuple (S, A, T , γ, D, R).
S and A are respectively the sets of possible states and ac-
tions. T is a transition function, T : S × A × S → R,
which gives the probability, given a state st and an action
at, of transitioning to state st+1. γ, the discount factor,
exponentially decreases the value of a future reward. D
is the distribution of start states. R is a reward function,
R : S ×A× S → R, where the reward is a function of st,
at, and st+1. We will also consider reward that is a function
of only st and at.

Reinforcement learning algorithms (see Sutton and Barto
(1998)), seek to learn policies (π : S → A) for an MDP
that maximize return from each state-action pair, where
return =

∑T
t=0E[γtR(st, at, st+1)]. In this paper, we

focus on using a value-function-based RL method, namely
SARSA(λ) (Sutton and Barto, 1998), augmented by the
TAMER-based learning that can be done directly from a hu-
man’s reinforcement signal. Though more sophisticated
RL methods exist, we use SARSA(λ) for its popularity
and representativeness, and because we are not concerned
with finding the best overall algorithm for our experimental
tasks but rather with determining how various methods for
including a human model change the base RL algorithm’s
performance.

2.2. The TAMER Framework for Interactive Shaping

The TAMER Framework, introduced by Knox and Stone
(2009) is an approach to the problem of how an agent

should learn from numerically mapped reinforcement sig-
nals. Specifically, these feedback signals are delivered by
an observing human trainer as the agent attempts to per-
form a task.1 TAMER is motivated by two insights about
human reinforcement. First, reinforcement is trivially de-
layed, slowed only by the time it takes the trainer to assess
behavior and deliver feedback. Second, the trainer observes
the agent’s behavior with a model of that behavior’s long-
term effects, so the reinforcement is assumed to be fully
informative about the quality of recent behavior. Human re-
inforcement is more similar to an action value (sometimes
called a Q-value), albeit a noisy and trivially delayed one,
than MDP reward. Consequently, TAMER assumes human
reinforcement to be fully informative about the quality of
an action given the current state, and it models a hypothet-
ical human reinforcement function, H : S × A → R, as
Ĥ in real time by regression. In the simplest form of credit
assignment, each reinforcement creates a label for the last
state-action pair.2 The output of the resultant Ĥ function —
changing as the agent gains experience — determines the
relative quality of potential actions, so that the exploitative
action is a = argmaxa[Ĥ(s, a)].

3. Sequential TAMER+RL
Noting that TAMER agents typically learn faster than
agents learning from MDP reward but to a lower perfor-
mance plateau, Knox and Stone combined TAMER and
SARSA(λ) (2010). Their aim was to complement TAMER’s
fast learning with RL’s ability to often learn better poli-
cies in the long run. These conjoined TAMER+RL algo-
rithms address a scenario in which a human trains an agent,
leaving a model Ĥ of reinforcement, and then Ĥ is used
to influence the base RL algorithm somehow. We call
this scenario and the algorithms that address it sequential
TAMER+RL. For all TAMER+RL approaches, only MDP
reward is considered to specify optimal behavior. Ĥ pro-
vides guidance but not an objective. In this section, we re-
produce and then extend prior investigations of sequential
TAMER+RL, yielding more prescriptive and general con-
clusions than prior work allowed.

3.1. Combination techniques

Knox and Stone tested eight TAMER+RL techniques that
each use Ĥ to affect the RL algorithm in a different
way. Four were largely effective when compared to the
SARSA(λ)-only and TAMER-only agents3 on both mean re-

1In our experiments, the trainer has a button for positive re-
inforcement and one for negative. Multiple button presses are
roughly interpreted as more intense feedback.

2The trivial delay is dealt with using a credit assignment tech-
nique described in Knox and Stone (2009).

3A TAMER-only agent simply uses Ĥ to choose actions, ig-
noring MDP reward. In sequential TAMER+RL, Ĥ is constant,
and thus so is the agent’s policy.
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ward over a run and performance at the end of the run. We
focus on those four techniques, which can be used on any
RL algorithm that uses an action-value function. Below,
we list them with names we have created. In our notation,
a prime (e.g., Q′) after a function means the function re-
places its non-prime counterpart in the base RL algorithm.

• Reward shaping: R′(s, a) = R(s, a)+ (β ∗ Ĥ(s, a))

• Q augmentation: Q′(s, a) = Q(s, a)+ (β ∗ Ĥ(s, a))

• Action biasing: Q′(s, a) = Q(s, a) + (β ∗ Ĥ(s, a))
only during action selection

• Control sharing: P (a=argmaxa[Ĥ(s, a)]) =
min(β, 1). Otherwise use base RL agent’s action
selection mechanism.

These four techniques are numbered 1, 4, 6, and 7 in Knox
and Stone (2010). We altered action biasing to generalize
it, but the ε-greedy policies we use in our experiments are
not affected. In the descriptions above, β is a predefined
combination parameter. In our sequential TAMER+RL ex-
periments, β is annealed by a predefined factor after each
episode for all techniques other than Q augmentation.

We now briefly discuss these techniques and situate them
within related work. In the RL literature, reward shaping
adds the output of a shaping function to the original MDP
reward, creating a new reward to learn from instead (Dorigo
and Colombetti, 1994; Mataric, 1994). As we confirm in
the coming paragraph on Q augmentation, our reward shap-
ing technique is not the only way to do reward shaping, but
it is the most direct use of Ĥ for reward shaping.

If Ĥ is considered a heuristic function, action biasing
is the same action selection method used in Bianchi et
al.’s Heuristically Accelerated Q-Learning (HAQL) algo-
rithm (Bianchi et al., 2004). Control sharing is equiva-
lent to Fernández and Veloso’s π-reuse exploration strat-
egy (2006). Note that both control sharing and action bi-
asing only affect action selection and can be interpreted as
directly guiding exploration toward human-favored state-
action pairs.

Q augmentation is action biasing with additional use
of Ĥ during the Q-function’s update. Wiewiora et
al.’s related look-ahead advice (2003) uses a discounted
change in the output of a state-action potential function,
γφ(st+1, at+1)− φ(st, at), for reward shaping and to aug-
ment action values during action selection. Interestingly,
look-ahead advice is equivalent to Q augmentation when
Ĥ is used for φ, the state and action space are finite, and
the policy is invariant to adding a constant to all action val-
ues in the current state (e.g., ε-greedy and soft-max).

3.2. Sequential learning experiments

We now describe our sequential TAMER+RL experiments.
We first validate our reimplementation of TAMER and
TAMER+RL by reproducing Knox and Stone’s results on
the single task they tested. We then evaluate the algorithms’
effectiveness on a different task. Additionally, we analyze
our results at a range of combination parameter values (β
values) to identify challenges to setting β’s value without
prior testing.

Following past work on TAMER and TAMER+RL, we im-
plemented the corresponding algorithms as exactly as we
could, excepting some changes to the credit assignment
technique in Knox and Stone (2009).4 Using the origi-
nal Ĥ representation (linear model of RBF features), task
settings, SARSA(λ) parameters, and training records from
Knox and Stone (2010),5 we repeat their experiments on
the Mountain Car task,6 using all four combination tech-
niques found to be successful in their experiments and a
range of β combination parameters. We then test these
TAMER+RL techniques on a second task, Cart Pole, using
an Ĥ model trained by an author. We again use SARSA(λ),
choosing parameters that perform well but sacrifice some
performance for episode-to-episode stability and the ability
to evaluate policies that might otherwise balance the pole
for too long to finish a run. In Mountain Car, the goal is
to quickly move the car up a hill to the goal. The agent re-
ceives -1 reward for all transitions to non-absorbing states.
In Cart Pole, the goal is to move a cart so that an attached,
upright pole maintains balance as long as possible. The
agent receives +1 reward for all transitions that keep the
pole within a specified range of vertical. The Ĥ for Cart
Pole was learned by k-Nearest Neighbor. For both tasks,
we use Gaussian RBF features for SARSA(λ) and initial-
ize Q pessimistically, as was found effective in Knox and
Stone (2010). In these and later experiments, Ĥ outputs are
typically in the range [-2, 2].

We evaluate each combination technique on four crite-
ria; full success requires outperforming the corresponding
Ĥ’s TAMER-only policy and SARSA(λ)-only both in end-
run performance and cumulative reward (or mean reward
across full runs, equivalently).

4For space considerations, we we will not fully describe these
changes. Briefly, for each reinforcement signal received, Knox
and Stone create a learning sample for every time step within a
window of recent experience, resulting in many samples per rein-
forcement in fast domains. We instead create one sample per time
step, using all crediting reinforcements to create one label.

5The models we create — Ĥ1 and Ĥ2 — from the original
training trajectories perform a bit better than those from Knox
and Stone’s experiments, which points to small implementation
differences.

6Tasks are adapted from RL-Library (Tanner and White,
2009).
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Figure 1. Comparison of TAMER+RL techniques with SARSA(λ)
and the TAMER-only policy on Mountain Car over 40 or more runs
of 500 episodes. Ĥ1 and Ĥ2 are models from two different human
trainers. The top chart considers reward over the entire run, and
the bottom chart evaluates reward over the final 10 episodes. Error
bars show standard error.
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Figure 2. The same TAMER+RL comparisons as in Figure 1, but
on Cart Pole over runs of 150 episodes. A single Ĥ was
used. End-run performance is the mean reward during the last
5 episodes.

3.3. Sequential learning results and discussion

Figures 1 and 2 show the results of our experiments for se-
quential TAMER+RL. For now, we only show results for the
β combination parameters that accrue the highest cumula-
tive reward for their corresponding technique. Figure 2 ad-
ditionally shows learning curves for the first 30 episodes of
the Cart Pole run. (Our early-run results for Mountain Car
are similar to those shown by Knox and Stone (2010)).

Qualitatively, our Mountain Car results agree with previous
work. Action biasing and control sharing succeed on all
four criteria and significantly outperform other techniques
in cumulative reward. Reward shaping and Q augmenta-
tion also improve over SARSA(λ)-only by both metrics and
over the TAMER-only policies in end-run reward.

On Cart Pole, action biasing and control sharing again suc-
ceed fully. This time, Q augmentation also meets the crite-
ria for success, though it performs significantly worse than
action biasing and control sharing. Most interestingly, re-
ward shaping, at its best tested parameter, does not signifi-
cantly alter SARSA(λ)’s performance on either metric.

By choosing the best β parameter value for each technique,
prior TAMER+RL experiments sidestep the issue of using an
effective value without first testing a range of values. With
experiments in two tasks, we can begin to address this prob-
lem by examining each technique’s sensitivity to β param-
eter changes and whether certain ranges of β are effective
across different tasks. In Figure 3, we show the mean per-
formance of each combination technique as β varies. Ex-
amining the charts, we consider several criteria:

• performance at worst β value,
• range of beneficial β values,
• and existence of β values that are effective across

tasks.
Evaluating the techniques on these three criteria creates a
consistent story that fits with our analysis of the techniques
at their best β parameter values (in Figures 1 and 2). The
two methods that only affect action selection — action bi-
asing and control sharing — emerge as the most effective
techniques without a clear leader between them, and they
are followed by Q augmentation and then shaping rewards.

From an RL perspective, the weakness of reward shap-
ing may be counterintuitive. When researchers discuss
combining human reinforcement with RL in the literature,
reward shaping is predominantly suggested (Thomaz and
Breazeal, 2006; Isbell et al., 2006), possibly because hu-
man “reward” is seen as an analog to MDP reward that
should be used similarly. However, though reward shaping
is generally cast as a guide for exploration, it only affects
exploration indirectly through precariously tampering with
the reward signal. Action biasing and control sharing affect
exploration directly, without manipulating reward. Thus,
they achieve the stated goal of reward shaping while leav-
ing the agent to learn accurate values from its experience.
Following this line of thought, Q augmentation is identi-
cal to action biasing during action selection, boosting each
action’s Q-value by the weighted prediction of human re-
inforcement. In addition to this direct guidance on explo-
ration, Q augmentation also changes the Q-value during the
SARSA(λ) update’s calculation of temporal difference er-
ror. As discussed in Section 3.1, Q augmentation is nearly
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Figure 3. Performance of each technique with each tested Ĥ over a range of β parameters on two tasks: Cart Pole (CP) and Mountain
Car (MC). Note changes in y-axis scaling.

equivalent to a form of reward shaping called look-ahead
advice (Wiewiora et al., 2003). In short, we observe that
the more a technique directly affects action selection, the
better it does, and the more it affects the update to the Q
function for each transition experience, the worse it does.
Q augmentation does both and performs between the tech-
niques that do only one.

Taken together, these experiments validate Knox and
Stone’s conclusions and yield new, firmer conclusions
about the relative effectiveness of each technique, endors-
ing action biasing and control sharing over the two other
previously successful techniques. And more generally,
these results endorse manipulating action selection and
leaving the action-value model’s update unmolested.

4. Simultaneous TAMER+RL
To this point, similarly to all prior work on TAMER, we have
assumed that the human training was finished prior to any
reinforcement learning. This “sequential” learning is some-
times appropriate; for instance, when a difficult-to-simulate
reward function is tied to potentially costly learning trials
and the agent can train in simulation without significant
cost. However, in other scenarios this assumption can be
limiting. In this section, we investigate how to modify se-
quential TAMER+RL algorithms to allow a trainer to step
in as desired to alter the course of reinforcement learning
while it is in progress. We call this scenario and the algo-
rithms that address it “simultaneous” TAMER+RL. Specifi-
cally, the agent should learn simultaneously from two feed-
back modalities — human reinforcement and MDP reward
— as one fully integrated system. As in the sequential
TAMER+RL approaches, we examine techniques that use
only Ĥ from TAMER in the RL algorithm, otherwise leav-
ing the two algorithms as separate modules.

Since TAMER empirically compares most favorably against
RL algorithms in early learning (Knox and Stone, 2009),
we expect the greatest gains to come from training near the
beginning of learning. However, training at any suboptimal
point along the learning curve should benefit the agent, and
we hope to do little harm if the agent is already performing

optimally and the trainer’s feedback cannot help.

Some desirable characteristics for simultaneous learning
are:

1. behavioral consistency: The agent’s behavior should
not be erratic, making it difficult to give feedback to
specific actions.

2. responsiveness to the trainer: The agent should
quickly and obviously demonstrate that it is learning
from human reinforcement to maintain interactivity.

3. trainer can give feedback to the RL-only policy: If a
trainer comes in midway through learning, the trainer
should be able to capture the good aspects of what has
already been learned and criticize the negative aspects.

4. trainer’s influence is applied appropriately: Ĥ’s influ-
ence on the RL algorithm’s learning and/or action se-
lection should be larger in more recently trained areas
of the state-action space and smaller in areas trained
less recently.

Simultaneous learning — and its inclusion of RL-based ac-
tion selection during training — presents new challenges
for maintaining behavioral consistency. For instance, con-
trol sharing abruptly shifts between two policies, which can
create erratic behavior with many different actions (both
good and bad) in a small time period, increasing the diffi-
culty of giving clear feedback. Also note that the second
and third characteristics are in opposition. Fully respond-
ing to the trainer’s reinforcement requires abandoning the
policy learned by MDP reward. Our module for determin-
ing human influence, described in the following section,
strikes a balance by ramping up the influence of Ĥ with
increased reinforcement, keeping the RL policy early on.

4.1. Determining the immediate influence of Ĥ

Simultaneous learning allows human trainers to insert
themselves at any point of the learning process. Conse-
quently, Ĥ’s influence should increase in areas of the state-
action space with recent reinforcement — but not in areas
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that have not been targeted with feedback — and decrease
in the absence of reinforcement, leaving the set of optimal
policies unchanged in the limit. Thus, we must do more
than annealing a combination parameter, as is done in se-
quential learning.

We determine Ĥ’s influence through a novel adaptation
of the eligibility traces often used in reinforcement learn-
ing (Sutton and Barto, 1998). We will refer to it as the eli-
gibility module. The general idea of this eligibility module
is that we maintain an eligibility trace for each state-action
feature7, normalized between 0 and 1, that represents the
recency of training while that feature was active (i.e., non-
zero). Then, the eligibility traces and a time step’s feature
vector together calculate a measure of the recency of train-
ing in similar feature vectors. That measure, multiplied by
a constant scaling parameter cs, is used as the β term intro-
duced in Section 3.1. The implementation follows.

Let −→e be the vector of traces and −→fn be the feature vector
normalized such that each element of −→fn exists within the
range [0, 1]. The eligibility module is designed to make β
a function of −→e , −→fn, and cs with range [0, cs]. A guiding
design constraint is that when −→e =

−→
1 (i.e., each element

of −→e is the maximum allowed), the normalized dot prod-
uct of −→e and any −→fn, denoted n(−→e ·−→fn), should equal 1
(since it weights the influence of Ĥ). To achieve this, we
make n(−→e ·−→fn) = −→e · (−→fn / ‖

−→
fn ‖1) = (−→e ·−→fn) /

(‖ −→fn ‖1) = β / cs. Thus, at any time step with nor-
malized features −→fn, the influence of Ĥ is calculated as
β = cs(−→e ·

−→
fn)/(‖

−→
fn ‖1). This formula has a desirable

mathematical characteristic; for a given −→e , β is higher
when relatively large feature values correspond to large
trace values — indicating the current state-action pair is
similar to the recently trained state-action pairs — and β is
smaller when large feature values correspond to small trace
values.

Using accumulating traces capped at 1, the trace is updated
with −→fn during training: ei := min(1, ei + (fn,i ∗ a)),
where ei and fn,i are the ith elements of −→e and −→fn, re-
spectively, and a is a constant factor that moderates the
speed of accumulation. During time steps without training,
−→e := decayFactor ∗ −→e .

4.2. Simultaneous learning experiments

Our experiments test the effectiveness of simultaneous
TAMER+RL when training starts either at the beginning of
learning or after some learning has occurred. We again
use Mountain Car and Cart Pole, and we focus on the
two best-performing combination techniques, action bias-

7The feature vector is extracted from the current state-action
pair. We advise using features that generalize across state space
(e.g., Gaussian RBFs). The state-action features need not match
those of either Ĥ or Q.
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Figure 4. Simultaneous TAMER+RL results. Mean reward is cal-
culated over runs of 500 episodes in Mountain Car and 150
episodes in Cart Pole. Standard error is shown.

ing and control sharing. For the eligibility module, the
scaling parameter cs for Mountain Car and Cart Pole is re-
spectively 100 and 200 for action biasing and 2 and 1 for
control sharing. These values were chosen to be on the up-
per end of each method’s effective β values in Figure 3.
The accumulation factor a for eligibility is 0.2. Train-
ing in Mountain Car occurs either for 16 episodes, start-
ing at episode 1, or for 12 episodes after 20 episodes of
SARSA(λ)-only learning. In Cart Pole, training at start
occurs for 12 episodes, and training after 25 episodes of
SARSA(λ)-only learning lasts 8 episodes. The start times
are chosen to represent the beginning of learning and also
a point at which the SARSA(λ) agent has learned a policy
that is much improved but still quite flawed.8 The num-
ber of episodes corresponds to an informal assessment of
how many episodes are needed to satisfactorily train the
agent; training at later start times progresses more quickly.
The trainer has a button that starts and stops training during
the designated training episodes, letting the human observe
without the agent updating Ĥ or the eligibility module.

An added experimental challenge is that the training is in-
extricably bound to one specific run, whereas sequential
experiments can reuse the same training session for any
number of parameters and combination techniques, limit-
ing the depth of analysis that can be done for a set num-
ber of trainer-hours. Mountain Car and Cart Pole training
sessions typically took around 8 minutes and 15 minutes
each, respectively. Consequently, each experimental con-
dition was limited to 3 runs of training for a total of 12 runs
on each task.

4.3. Simultaneous learning results and discussion

The results of our simultaneous TAMER+RL experiments
are shown in Figure 4. Though the sample size is too
small to show statistical significance, there is a clear pattern
of both action biasing and control sharing outperforming
SARSA(λ). The condition that is closest to SARSA(λ) in

8Note that sequential TAMER+RL differs from simultaneous
TAMER+RL where training occurs at the start because the sequen-
tial algorithm begins with a pre-trained Ĥ . The training episodes
are not counted in sequential TAMER+RL experiments.
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terms of standard error, control sharing on Cart Pole where
training begins after 25 episodes, still receives almost twice
the reward of SARSA(λ). We also observe that training at
the beginning of learning is more effective than training af-
ter some autonomous learning, as we expected. Seeing this,
one might ask whether the n episodes of RL-only learn-
ing before training is helping or whether the prior learning
should be abandoned to start from scratch. We can test this.
Starting from scratch after n episodes is the same as simply
training from the start and stopping n episodes early. So if
we ignore the first n episodes of the later-training group and
the last n episodes of the training-at-start group, the com-
parison of the groups’ mean reward addresses this ques-
tion. Of four such comparisons (2 techniques x 2 tasks), the
later-training group outperforms three times and is roughly
equal once, suggesting that the prior learning does indeed
help. These results serve as proof of concept for the ef-
fectiveness of simultaneous TAMER+RL with our eligibility
module.

5. Related Work
In this section, we situate our work within prior research on
naturally transferring knowledge to a reinforcement learn-
ing agent. We focus on work not already mentioned in Sec-
tion 3.1, or in the previous papers on TAMER (Knox and
Stone, 2009; 2010).

In the only other example of an agent learning simul-
taneously from human reinforcement and MDP reward,
Thomaz and Breazeal (2006) interfaced a human trainer
with a table-based Q-learning agent in a virtual kitchen en-
vironment. Their agent seeks to maximize its discounted
total reward, which for any time step is the sum of human
reinforcement and environmental reward. Their approach
is a form of reward shaping, differing in that Thomaz and
Breazeal directly apply the human reinforcement value to
the current reward (instead of modeling reinforcement and
using the output of the model as supplemental reward).

Judah et al. consider a learning scenario that alternates be-
tween “practice”, where actual world experience is gath-
ered, and an offline labeling of actions as good or bad by
a human critic (2010). Using an elegant probabilistic tech-
nique with a few assumptions, the human criticism is input
to a loss function that lessens the expected value of candi-
date policies while also automatically determining the level
of influence given to the criticism. From some mixed re-
sults and comments from frustrated subjects, they predicted
that redesigning their system to be more interactive and to
let the human train periodically — characteristics of simul-
taneous TAMER+RL — would improve performance.

Imitation learning, or programming by demonstration, has
also been used to improve reinforcement learning, using
preprogrammed policies (Price and Boutilier, 2003) or hu-

mans (Taylor et al., 2011; Smart and Kaelbling, 2000)
to provide demonstrations for an agent that observes and
learns. These methods are similar to control sharing. An
advantage, though, of reinforcement over demonstration is
that reinforcement permits learning the relative values of
actions, allowing techniques like action biasing to gently
push the behavior of the RL agent towards the policy en-
dorsed by Ĥ , whereas pure demonstration is all or nothing
— either the demonstrator or the learning agent chooses the
action. Additionally, trainers can give reinforce state-action
pairs visited by the agent’s policy, whereas demonstrations
might not ever visit areas of the state space that the imita-
tion learning algorithm visits.

6. Conclusion
Prior work on TAMER+RL is limited by having only tested
on a single domain and by simply taking the best β com-
bination parameter from testing. Further, past TAMER+RL
algorithms were designed for sequential learning and were
unsuitable for simultaneously learning from the trainer and
the MDP reward signal. This paper addresses these lim-
itations, giving a clear endorsement of using Ĥ to affect
action selection and, for the first time, enabling a human
trainer to interactively provide feedback at any time dur-
ing the learning process, a critical improvement towards
the practicality and widespread applicability of the TAMER
framework.
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