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Abstract  
The authors introduce you in this paper, not the 
method of imitation learning itself, but the 
method of hand pose estimation with single or 
dual high-speed camera. We believe that hand 
pose estimation at high speed and with high 
accuracy, i.e. recognition of human hand 
motions, is essential for robot learning by 
observation or its imitation learning. The 
purpose of this paper is to propose a remote-
controlled robot system capable of accurate and 
high-speed performance of the same operation in 
strict conformity to the movement of the human 
operator, without sensors being installed or 
special control means being used. In particular, 
this paper intends to introduce a method for 
implementing a high-precision 3D finger pose 
estimation at a high speed that permits real time 
operation of a remote-controlled robot by two 
cameras installed at positions of loosely 
orthogonal relationship, using one PC of the 
normal specifications. 

1.  Introduction 

The authors introduce you in this paper, not the method of 
imitation learning itself, but the method of hand pose 
estimation with single or dual high-speed camera. We 
believe that hand pose estimation at high speed and with 
high accuracy, i.e. recognition of human hand motions, is 
essential for robot learning by observation or its imitation 
learning. 

The robot research and development projects 
implemented so far have not yet succeeded in 
incorporating a high level of intelligence in a robot. For 
example, when an object having various poses, weights 
and centers of gravity is located in front, it is not easy to 
ensure that an object is held by the robot hand 
appropriately in conformity to particular characteristics of 
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each object so that the object can be manipulated. The 
level of the intelligence that can be built in a robot will be 
that of a six-year-old child, at best. However, the human 
communities are entering the age of a declining birthrate 
and aging population. Especially in the field of physical 
distribution and elder care, robots will be required to have 
an advanced level of intelligence. 

What is important at present is a paradigm shift in 
thinking. To be more specific, it is not easy to incorporate 
an advanced level of intelligence in a robot in such a way 
that the robot will take care of the work of assortment. 
Assume, for example, that a human operator is stationed 
in a room different from that for the assortment worksite, 
and he watches a monitor to find out that the items to be 
sorted out are traveling on a belt conveyer. In response to 
the scene appearing on the monitor, the human operator 
moves his fingers and arms, and the robot located in a 
remote position performs the similar movement. If this is 
possible, comparatively complicated sorting work can be 
performed by the robot, without an advanced level of 
intelligence built in the robot. This does not require the 
robot to have a high level of intelligence. Rather, it is only 
required that the daily human action is performed through 
the monitor. 

Hand tracking is not the robot vision technology required 
in this case. What is needed will be hand pose estimation. 
To be more specific, in the technique of hand tracking, the 
direction of hand movement and distance of hand 
movement are subjected to image analysis, and are 
assigned to the functions of the robot and information 
communications equipment. This can be compared to the 
cases where, if the human operator has performed action 
of "scissors" in a game of "scissors, paper, rock", the 
robot is made to perform operation A. If the human 
operator has performed action of "paper", the robot is 
made to perform operation B. The technique of hand 
tracking is embodied in a pointing device where the 
direction of hand movement and distance of hand 
movement are detected and employed to perform the 
required work. The robot is not manipulated by the daily 
action performed by the human operator. By contrast, in 
the technique of hand pose estimation, the "pose and 
posture of the hand" are associated with the dynamic 
behavior of the robot. To be more specific, in the 
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technique of hand pose estimation, the same movement as 
that of the human operator is re-configured by the robot. 
This does not required the user to learn a specific action 
in advance to ensure that the robot performs a specific 
function. If the user performs the daily action, the robot 
will do the same. 

Two approaches are used to roughly classify conventional 
hand pose estimation - 3D-model-based and 2D-
appearance- based. The 3D-model-based approach [1]-[6] 
involves extracting local characteristics, or silhouettes, in 
image recorded using a camera and fitting a 3D hand 
model constructed beforehand on a computer. While this 
approach estimates hand shapes highly accurately, it 
processes self-occlusion poorly and requires long 
processing time. The 2D-appearance-based approach [7]-
[9] involves directly comparing an input image to an 
image stored in a database. While this approach reduces 
calculation time, if 3D changes in hand appearance - 
including wrist and forearm movements - are not an issue, 
this approach requires a large reference database and 
robot hand movement is difficult to control using 
imitation. If basic difficulty in estimating hand poses lies 
in hand shape complexity and self-occlusion, high-
accuracy poses become theoretically possible to estimate, 
but this requires an extensive database including all 
possible hand images, including complexity and self-
occlusion. The feasibility of this approach therefore 
depends on the search algorithm. 

Regarding the 2D-appearance-based approach, Hoshino et 
al. proposed using computer graphics (CG) editing 
software and data gloves to create a large database 
containing personal hand pose attributes such as joint 
movable range and bone length [8]. They developed a 
search algorithm that shortens search time in looking for 
un-known input images by using a multi-layer database 
based on a self-organization map accompanying self-
multiplication and self-extinction so that similar hand 
images are brought into closer proximity and by reducing 
the search area so that no data other than that near the 
search result during the previous search time will be 
inquired about [10]. 

In the technique of hand pose estimation using one 
camera, self-occlusion is fatal to the manipulation of an 
object by a remote-controlled robot. For example, assume 
that, when an object is photographed by the camera from 
the back of the hand, the silhouette is almost the same. In 
this case, there are at least two types of postures, such as 
power grasping and precise pinching. If the positional 
relationship is inaccurate between the finger and the 
object to be gripped, the object will easily get out of the 
robot hand. However, when consideration is given to an 
application example of the hand pose estimation 
technique, it is not realistic to use many cameras to 
photograph an object by surrounding the object to be 
manipulated, as in the case of the multi-camera system. If 
possible, the requirements should be met by installing two 
cameras at positions of loosely orthogonal relationship, 

without the camera installation position being specified in 
a precise manner. 

 

 
 (a) Bending/extending of each finger. 
 
 
 
 
 
 
(b) Spreading out of the fingers. 
 
 
 
 
 
 
(c) Thumb motion patterns. 
 
 
 
 
 
 
(d) Wrist inclination examples. 
 
 
 
 
 
(e) Forearm rotation. 
 
 
 
 
 
Figure 1. Additional hand poses derived from basic poses. 

 

 

 
 

 
 
 
 
 
 
 
 
 

Figure 2. Proportional information of an image. 
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In view of the above-mentioned background, the purpose 
of this paper is to propose a remote-controlled robot 
system capable of accurate and high-speed performance 
of the same operation in strict conformity to the 
movement of the human operator, without sensors being 
installed or special control means being used. In particular, 
this paper intends to introduce a method for implementing 
a high-precision 3D finger pose estimation at a high speed 
that permits real time operation of a remote-controlled 
robot by two cameras installed at positions of loosely 
orthogonal relationship, using one PC of the normal 
specifications. 

2.  System Configuration 

2.1  Data Sets 

The database for our previous system was constructed 
using a single type of hand model, i.e. the experimenter’s 
hand [12]-[13]. Namely, the database was prepared with 
storage by pairing individual hand images and finger and 
wrist angles synchronously acquired from a data glove 
and camera. Images were recorded using a camera at a 
resolution of 320*240 pixels laterally and vertically 
viewing hands and fingers on a big enough screen. 
Fingers and wrist angles were acquired using a data glove 
(Cyber Glove, Virtual Technologies Inc.), that obtained 
18 types of angular information on the hand at a time. The 
database had about 30,000 datasets. 

The database must contain every possible hand pose for 
that hand model, without exception. In this paper, we 
provide the system with two types of hand model pose 
patterns. In the discussion that follows, these two types of 
pattern are referred to as basic pose patterns and 
additional pose patterns. Both of them are generated using 
3D computer graphics [8] (Poser 5, Curious Labs). The 
basic pose patterns are created to cover all hand poses. 
We independently captured images of the 
bending/extending of the index finger, middle finger, ring 
finger, and little finger in turn, the degree to which the 
fingers are spread out or close to one another, thumb 
motions, wrist motions, and the rotation of the forearm, 
and we saved data sets representing combinations of these 
poses to the database. For wrist motions, we only moved 
the wrist within the same plane, relative to the camera, for 
each rotation of the forearm. 

Next, we used the additional pose patterns to add data sets 
for the poses when the palm or back of the hand is facing 
the camera. Whereas we had treated the extent to which 
the fingers are spread out from one another as one degree 
of freedom, actually the fingers are all capable of moving 
independently toward or away from the other fingers, and 
there is a great different in the appearance when the palm 
or back of the hand is facing the camera. Therefore, we 
added further hand pose data that combined the basic pose 

patterns for the thumb motions and wrist motions with 
new patterns for the bending/extending of each finger and 
the extent to which the fingers are spread out. Figure 1 
shows examples of the additional bending/extending and 
spreading out of the fingers. 

In this way, we constructed a database containing 772,576 
data sets. This is roughly 25 times larger than the scale we 
were able to achieve using our previous method. 

2.2  Calculation of Proportional Information on Hand 
Images Title 

First, the contours of hand were defined. Specifically, the 
outermost pixel is given Labeling No. 1, and the pixel 
internally adjacent to the outermost pixel is given 
Labeling No. 2. Repeating this labeling process, the pixel 
position that is given the largest labeling no. is found. 
This is the reference point. Second, a hand range was 
defined and cutout. On the original image obtained by the 
previous paragraph, the top end, left end and right end of 
the hand image correspond to the top end, left end and 
right end of the hand’s contour respectively. The bottom 
end of the hand image is at a height lower than the 
reference point by the distance to such a pixel on the 
outermost contour that is nearest from the reference point 
(the distance is defined by the number (N) of pixels). 

For a hand image as cut out by Paragraph above, the 
following three different proportions, as shown in Figure 
2, are calculated. 

(1) Tallness:  ( )][][/][][ iWiHiHiRtall += , 
(2) Top-heaviness: ][/][][ iHiHiR uppertopheavy = , 

(3) Right-biasness:  ][/][][ iWiWiR rightdrightbiase = . 

Where, H denotes the number of pixels measured in the 
vertical direction within the cutout. W denotes the number 
of pixels measured in the horizontal direction within the 
cutout. Hupper denotes the number of pixels located above 
the base point. Wright denotes the number of pixels in the 
right region of base point. Suffix i denotes the dataset 
number in the database. 
These three proportions correspond roughly to forearm 
rotation, bending of thumb, and bending of four fingers 
other than thumb respectively. This image interpretation 
by proportional information is used for the first stage 
coarse screening. 

2.3  Calculation of Image Features 

In the present study, an image was divided into 64 
sections in total - 8 x 8 each in the vertical and lateral 
directions - and the respective divided images were 
represented by numbers of dots. Therefore, a single image 
is described using the image features as a dot of 1 pattern 
x 64 divided sections. 

2.4  Construction of Database 
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As discussed above, when one camera is used for 
photographing, various postures can be included when the 
appearance is the same as viewed from one direction. 
When the silhouette is the same as viewed from the back 
of the hand, there are various positional relationships of 
the thumb with respect to four other fingers. Taking 
advantage of the two high-speed cameras installed at 
positions of loosely orthogonal relationship, we would 
like to introduce the method for configuring the database 
for high-precision estimation of the positional relationship 
of the thumb with respect to other fingers. To be more 
specific, the data set of the database for matching has the 
following five forms of information: (i) finger joints 
angles as well as wrist angles (18+3 DOFs) which hand 
CG images were generated with, (ii and iii) proportional 
information of each image (3 DOFs) obtained from two 
cameras, and (iv and v) hand image features (64 DOFs) 
obtained from two cameras. 

The following describes the basic concept of the method 
for hand pose estimation by two cameras installed at 
positions of loosely orthogonal relationship: In the first 
place, comparison is made of respective hand regions 
captured by two cameras, and the image having a greater 
area is determined. This is followed by the step of roughly 
narrowing the scope of choices, using the proportional 
hand image information on one of the images having been 
selected ((ii) or (iii)) alone. For simplicity, the first 
processing determines the approximate posture as viewed 
from the back of the hand. Secondly, high-definition 
matching of the degree of similarity (i.e., (v) or (iv)) is 
carried out by using only the image features obtained by 
the cameras installed at positions of loosely orthogonal 
relationship, out of the selected candidates. For brevity, 
using the image viewed from the lateral position, the 
second processing determines how far the finger is bent. 

3.  Hand Pose Estimation 

3.1  Hand Area Extraction 

To extract the user’s hand area, we use the background 
subtraction method. Where the background image is 
relatively stable, it is sufficient to generate in advance a 
background model by averaging a number of image 
frames that do not include the hand area. However, in 
most cases, there is some fluctuation in the background 
due to blinking light fixtures, changes in sunlight, foliage 
moving in the wind, and shadows from moving objects. 
Therefore, many methods have been proposed for 
background models that take this sort of background 
fluctuation into account. These can be divided into two 
main types: one type of method constructs a background 
model in advance, and the other dynamically updates the 
background model. Compared to the former method, the 
latter allows stable extraction of the movement area where 
there is significant change in the background, by 
dynamically modeling the background. However, there 

are also problems with this type of modeling, including 
high computing costs and the need for a large-capacity 
memory to achieve high-speed processing. 

In the interest of achieving high-speed processing, for this 
research we used the method of constructing a 
background model in advance, based on our assumption 
of use in an indoor environment, where there may be 
fluctuation due to the lighting but shadows from moving 
objects can be ignored. First, the image captured by the 
camera is express by the RGB colorimetric system. This 
system is however greatly affected by changes in 
brightness, due to the high correlation between the 
various values. Therefore, our system converts the image 
data from the RGB colorimetric system to the HSV 
colorimetric system that has a uniform color space, based 
on equations (1) and (2). 
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,                                               (3) 
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detailed search
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Figure 3. Two-step hand pose estimation method using 
two cameras installed at positions of loosely orthogonal 
relationship. 
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where, the H, S, and V in the equation stand for Hue, 
Saturation, and Value, respectively, of which our research 
uses H and S. The amount of fluctuation varies with the 
background area, but assuming that the fluctuations have 
a normal distribution, we use the background model 
shown in equation (4) for the H and S of each pixel. The
μandσ 2 in the equation represent the mean and the 
variance of the H and S in the N frame. When calculating 
the background difference to extract the hand area, if the 
difference for each pixel between the actual and the 
average H and S values is k times the standard deviation 
or less, the pixel is considered to be background. 
Once the background and foreground have been separated 
using the background subtraction method, the system 
removes noise by means of morphological opening, and 
takes the maximum linked area of the foreground as the 
hand area. 

3.2  Compensating for Forearm Inclination 

For estimation, it is necessary that the user be able to 
move freely before the camera. In the images we used to 
construct our database, the hand and forearm appear from 
the bottom of the screen, but when estimating the system 
must be able to recognize hand poses regardless of the 
direction from which the hand appears. The proposed 
method uses the fact that inclination results in virtually no 
change to the outline of the forearm to calculate and 
compensate for forearm inclination. 

First, the system looks for the four points: S, S’, E, and E’. 
Points S and E are the pixels at which the outline of the 
hand and forearm area crosses the edge of the screen. The 
system traces the pixels that make up the outline of the 
hand from point S to point E, and calculates the 
inclination of each pixel. The inclination of each pixel is 
taken to be the inclination of a straight line linking it with 
two other pixels, located a few pixels before and after it 
on the outline. The next step is to calculate the standard 
deviation around each pixel. Where there is a significant 
change in inclination, the standard deviation is large, and 
where there is little change it is small. Where the standard 
deviation is above a certain threshold, the nearest point to 
S is taken as S' and the nearest point to E is taken as E’. 
The straight line connecting S and S’ is called Ls, and the 
straight line connecting E and E’ is called LE. The 
inclination of the forearm is taken to be the average of the 
inclinations of Ls  and LE . 

3.3  Two-Stage Search 

The following shows the details of the first step of 
roughly narrowing the scope of choices, and the second 
step of high-definition matching of the degree of 
similarity: The first stage in a 2-stage search is coarse 
screening using proportional hand image information. The 
second stage is detailed screening for determining the 

image most similar among candidates selected in the first 
stage. The second stage uses similarity calculation based 
on specified image feature types. Figure 3 shows Two-
step hand pose estimation method using two cameras 
installed at positions of loosely orthogonal relationship. 

The first screening uses the three parameters defined by 
proportional information. If all three parameters fall 
within the specified threshold, the dataset is chosen as a 
candidate for the second screening. These three 
parameters and their thresholds are shown below. 

(1) Tallness threshold: 
tallcurrenttalltall RiRTh −−> ][ , 

(2) Top-heaviness threshold:  

topheavycurrenttopheavytopheavy RiRTh −−> ][  , 

(3) Right-biased threshold:  
      

drightbiasecurrentdrightbiasedrightbiase RiRTh −−> ][ . 

Rtall, Rtopheavy, and Rrightbiased are proportions representing 
tallness, top-heaviness, and right-bias of the hand image 
in the dataset under inquiry. Rcurrent-tall, Rcurrent-topheavy, and 
Rcurrent-rightbiased are proportions representing  tallness, top-
heaviness and right-bias of the current input image. Suffix 
i is the dataset number. 
The second screening uses a Euclidean–distance-based 
similarity search to determine the highest possible image 
similarity. Dataset joint angles having the shortest 
distance among candidates chosen represent the result to 
be determined as the image having the highest possible 
similarity to the input image. 

3.4  Arm Pose Estimation 

The following describes how to estimate the upper limb 
attitude: 

Firstly, photograph a checker board according to the 
Zhengyou Zhang procedure, and calculate the internal and 
external parameters of the camera. The internal 
parameters in this case are represented by the lens 
distortion, focal distance and projection offset in an image 
space. These internal parameters are calculated from the 
multiple checker board images captured by two cameras. 
The external parameters are represented by the position 
and rotation of the camera with respect to the world 
coordinate system. These external parameters are 
calculated from one set of checker board images captured 
by two cameras. The left top corner of one set of the 
images captured by two cameras indicates the origin of 
coordinates, which provides a basis for forming X-, Y- 
and Z-axes. 

Secondly, estimate the bone position using a 2D real 
image with distortion. Contour of the arm is obtained by 
binarization and edge detection. In this case, assume that 
the edge of the arm is a straight line. When the arm is 
viewed from the side (hereinafter referred to as "upper 
camera"), the locus of the center of the inscribed circle 
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represents the centerline of the bone, and the radius of the 
inscribed circle at each position indicates the bone radius. 

To be more specific, the row values on both ends of the 
edge are calculated in the specific direction of column in 
the coordinates (column and row) of a real image with 
lens distortion (where row 1 < row 2). A search is then 
made for a space where the edge point is located inside 
the radius of the cycle, with reference to radius (row2 - 
row1)/2. This is followed by the step of calculating the 
distance up to the edge within the range from row 1 to 
row 2. The minimum distance is recorded as an array with 
respect to each row value. After that, the row value where 
the distance is the maximum in the direction of row is 
taken as representing the position of the row. The above-
mentioned distance in this case is assumed as representing 
the radium of the bone. 

The above-mentioned calculation is performed for the 
upper camera and the image (hereinafter referred to as 
"lateral camera" of the arm as viewed from the top. It 
goes without saying that the relationship between the 
column and row is reversed for the lateral camera. 

Thirdly, create the bone corresponding points, and 
recover the 3D position. In the first place, the lateral 
camera image is assumed as a reference image. The bone 
point sequence data of the lateral camera image and upper 
camera image is then converted into the bone point 
sequence data of the distortion-free space. Then, an 
epipolar line is obtained with respect to a point of the 
bone point sequence data of the lateral camera. In this 
case, the epipolar line is obtained by projecting the sight 
line determined by the punctual coordinates of the bone 
point sequence data, onto the distortion-free image space 
of the upper camera, using a camera parameter. The 3D 
recovery position is assumed as the position where there 
is a crossing between the sight lines at two points of the 
upper and lateral cameras. 

Fourthly, detect the wrist position and elbow position, and 
calculate the wrist and elbow vectors. In this case, the 
wrist position is found out as follows: The bone radius of 
the lateral camera at each bone position is multiplied by 
the corresponding bone radius of the upper camera, and 
the sectional area of the arm is obtained. A search is made 
by moving toward the wrist. If there is no updating for a 
prescribed distance, this is assumed as the minimum value, 
namely, the wrist position. The elbow position 
corresponds to the 3D position that conforms to the length 
from the obtained wrist position to the elbow having been 
inputted in advance. 

To get the wrist vector and elbow vector, in the meantime, 
the covariance matrix of the 3D point sequence is found 
out within the length from the wrist to the elbow. The 
singular value of this matrix is analyzed. The 
corresponding to the eigen value providing the maximum 
singular value is considered as the vector from the wrist to 
the elbow (i.e., wrist vector). The vector from the elbow 
forward (i.e., elbow vector) can be obtained by the same 

processing, using the data from the obtained elbow 
position forward. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Proportional information of an image. 
Figure 4. Examples of estimated results in subject M.T. 

(a-1) PIP joint of index finger with palm facing the camera (wrist
rotation: 0 degrees).

(a-2) CM joint of index finger with palm facing the camera (wrist
rotation: 0 degrees).

(b-1) PIP joint of index finger with little finger facing the camera 
(wrist rotation: 90 degrees).

(b-2) CM joint of thumb with little finger facing the camera (wrist 
rotation: 90 degrees).
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4.  Estimation Experiment 

4.1  Methods and Procedures 

In order to verify the effectiveness of the system, the 
actual images were subjected to experimental estimation.  
Subjects held up a hand at a position approximately 1 m 
in front of the high-speed camera and moved the fingers 
and wrist freely. A motion of the hand was allowed in all 
the directions provided the hand was within the field 
angle of the camera. We employed a note PC (DELL 
Precision M4300, CoreTM 2 Duo Processor T8300 
(2.40GHz, 800MHz FSB), main memory 4GB), a high-
speed camera (Dragonfly ExpressTM, Point Grey Research 
Inc.). 

4.2  Results 

For quantitative assessments, measured and estimated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Snapshots of mimicking behavior as mobile 
manipulation. 
 

 

 

 

 

 

 

 

Figure 6. Remote control of a robot by hand pose 
estimation. 

values must be compared, but in an ordinary environment 
using our approach, measured values of joint angle in-
formation from the hand and fingers moving in front of 
the camera cannot be obtained, so we conducted 
estimation experiments by making the same motions in 
both hands; one was recorded by the camera for hand 
pose estimation and the other wearing a data glove (Cyber 
Glove made by Virtual Technologies Inc.) for obtaining 
the joint angle. Subjects were instructed to move their 
hand and fingers freely in front of a high-speed camera. 

Results in Figures 4 show angular data measured using 
the data glove and estimated results by our previous 
system (about 30,000 datasets: See an example video at 
IJCAI2009 AI Video Awards [14]) and new system 
(about 750,000 datasets) in a subject. In these figures, (a) 
and (c), and (b) and (d) show the PIP joint of the index 
finger and CM joint of the thumb, when the palm is facing 
the high-speed camera and the little finger is facing the 
camera respectively. The state with the joint extended was 
set to 180 degrees. Mean and standard deviation scores of 
errors in estimated angles at index PIP were 0.45±14.57 
by the proposed system, although 3.87±26.91 by our 
previous system, and at thumb CM, 4.7±10.82 and 
9.5±15.77, respectively. Standard deviations of errors 
seem to be bypassed, but mean error is smaller, showing 
the improvement in accuracy even for specified users. 
The system operates at 80 fps using a notebook PC with a 
single high-speed camera and enables real-time estimation. 

Figure 5 shows snapshots of the mobile manipulation by 
hand pose estimation technology. Figure 6 shows a 
snapshot of remote control of a humanoid robot by hand 
pose estimation system. 

5.  Discussion 

For a 3D hand pose estimation system, the following 
conditions [13] must be met: (i) Hand pose estimation 
must be sufficiently accurate with a joint angle estimation 
error of a maximum of 4 to 5 degrees. (ii) Processing 
speed must be sufficiently high - at least 100 fps. (iii) All 
users must be processed, regardless of different hand size 
and shape. The approach in this paper meets these three 
conditions. Other conditions that should be additionally 
satisfied include: (iv) Relatively fast hand movement such 
as for sign language - possibly representing a user’s 
natural movements - must be accepted, and (v) Both 
hands must be used, if possible. 

We consider that the biggest reason for the improved 
accuracy with regard to unspecified users is the massive 
increase in the amount of data sets contained in the 
database. Because the proposed method constructs a 
database that includes all possible hand movements of a 
hand pose model, the number of data sets reached 
772,576. In other words, a database that covers a single 
hand model evenly and in detail requires between several 
hundred thousand and several million data sets. However, 
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our previous method only created 30,000 data sets 
[8],[10],[12], a very small number. Under our previous 
method, a researcher created the database by wearing a 
data glove and forming various hand poses before the 
camera. While the researcher took care to cover all hand 
poses, the hand poses in the data base were influenced by 
the particular movements of the database creator. 
Therefore, a database created in this way inevitably 
relates to a single individual, which does not present a 
problem in estimating the hand poses of that individual, 
even if the database is small. However, we think that this 
did prevent the database from working well for 
unspecified users. 

The biggest reason the previous database did not work 
well for unspecified users was that a person wearing a 
data globe could not simulate individual differences in the 
spreading apart of the four fingers. Because the spreading 
apart of the fingers involves the movement of the joint at 
the base of each finger, it greatly affects the appearance of 
the hand. However, it is difficult to cover all the possible 
combinations of the spreading apart motion and the 
bending/extending motion using a human hand as a model. 

This paper has proposed the method for hand pose 
estimation using two cameras installed at positions of 
loosely orthogonal relationship. When distinction is to be 
made between similar operations such as grip holding and 
precision holding or stable gripping of an object is to be 
achieved, setting of the above-mentioned loose 
constraints will be permitted. However, if the hand pose 
estimation system is to be applied not only to the 
manipulation of a remote-controlled robot, but also to the 
information communications terminal by gesture, virtual 
key input device (so-called virtual key board), 3D-free 
pose input device, digital signage, finger motion capturing, 
it is preferred that pose estimation should be achieved 
successfully, using one or two camera images where the 
system side can be observed clearly, “even in the case of 
two through four cameras being installed appropriately” 
by each user. To be more specific, it is preferred that there 
should be no need of accurately specifying the position 
where a plurality of cameras are installed, unlike the 
multi-camera system, and the system should not use the 
camera position information. However, there is no 
knowing the image from which direction is fitted for pose 
estimation. Thus, it would be more preferred to provide a 
system that will provide “a plausible solution which is not 
very accurate in the strict sense of the word.” Solution to 
this problem will require a further study. 

This research is funded by SCOPE project of MIC of 
Japan, and KDDI Foundation. 
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