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Abstract

Using natural language directions to generate
plans that can be executed by robots requires
an understanding of the environment, the ob-
jects within it, and the structure of language.
Building and training the complex systems
that can do this is difficult.

We formulate this problem as an instance
of imitation learning and learn a cost func-
tion from demonstrated examples of people
following directions. This cost function is
then used to produce the desired direction
following behavior from an optimal controller
or planner, providing a straightforward and
principled way to reproduce human behavior.
Furthermore, unlike the previous supervised
approaches, this method allows for the learn-
ing of policies, not just specific plans, en-
abling operation in cases such as those where
the map is not known apriori.

1. Introduction

Robots that can be commanded through spoken in-
structions are a critical component to effective human-
robot teams. Spoken directions are an intuitive way
for users to interact with robots which requires no ex-
tensive training or specialized interfaces. As such, en-
abling robots to understand and follow natural lan-
guage instructions is a key challenge in robotics.

As an example, a robot could be tasked to deliver
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Figure 1. Example path for direction text ‘Start with back
to long wall of windows. Walk through door on the far-
thest left side of opposite wall (says “rle”). Take right at
photocopier, stay left at refrigerator, take left at end of hall
and right at intersection. Go straight through several sets
of doors until you are in a large open area facing windows.
Head forward and to your right, beyond the spiral stair-
case, towards some cubbies. Go straight down that hall,
turning left when you see orange couches.’

a package through directions such as the ones shown
in Figure 1. Though robots are very good at executing
planned actions, generating those plans automatically
and without imposing a high cognitive load on the user
is a difficult problem.

Previous work (Kollar et al., 2010a;b) has used a prob-
abilistic graphical model approach coupled with su-
pervised learning to build direction following systems.
We instead formulate this as an inverse optimal con-
trol problem, where the goal is to learn a cost function
which, when coupled with an optimal controller for the
domain, will generate a path through the environment
that matches the spoken directions.
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• Verb: Go

• Spatial Relation: through

• Landmark: the door near the elevators.

Figure 2. SDC for the sentence, “Go through the door near
the elevators.”

In contrast to the graphical model approach, using the
inverse optimal control approach can learn behaviors
based on a wide variety of optimal controllers. For
example, in the case where the robot is given a com-
plete model of the world, a reasonable controller is a
planner which searches over all possible paths for the
minimum cost option. In the case of incomplete world
information the same technique can be coupled with a
controller which instead generates policies correspond-
ing to the direction commands. By learning a policy
instead of a specific plan, the robot can adapt its be-
havior to the actual state of the world as it executes
the natural language directions.

2. Previous Work

2.1. Spatial Description Clauses

Following previous work (Tellex, 2010), we use spa-
tial description clauses (SDCs) to break down spatial
language discourse into simpler subcomponents. Each
SDC consists of a figure, a verb, a spatial relation, and
a landmark, as shown in Figure 2.

2.2. Supervised Learning Approach

Using the language and structural information ex-
tracted from natural language directions in the form
of SDCs, previous work (Kollar et al., 2010a) has used
a probabilistic graphical model approach for selecting
paths corresponding to natural language directions.
More concretely, this work uses a graphical model to
estimate the probability of seeing a particular path,
given the natural language command (in the form of
SDCs), the features of the world (in the form of a map
of objects), and allowable paths. Using this learned
graphical model, the most likely path is selected as
the path corresponding to the commanded direction.

Their work learns the given graphical model by fac-
torizing the probability distribution over paths into a
number of separate components, such as a factor which
measures the probability that a specific path geome-
try corresponds to the spatial relation keywords in a
given text, or a component which estimates the prob-

ability that the objects seen by a specific path corre-
spond to the landmark descriptions in the text. Each
of these components is then individually trained using
a separate labeled training set. For example, the path
geometry component is trained on datasets consisting
of spatial labels such as ‘towards’ and ‘around’ and
sample path geometries for each label.

More recently, Kollar et al. (2010b) have introduced
a conditional random field (CRF) approach to esti-
mating the conditional probabilities of paths in envi-
ronment, given the natural language commands, path
and world geometry, and groundings of objects in the
extracted SDCs to real world objects. This model can
be trained given supervised labelings of all the neces-
sary variables using standard CRF techniques.

3. Imitation Learning Approach

In contrast to the previous supervised learning ap-
proaches, we frame the problem as an imitation learn-
ing problem using the LEARCH framework of Ratliff
et al. (2009) for inverse optimal control. In this ap-
proach we use demonstrated behaviors to learn a cost
function which, when used with an optimal controller,
results in similar robot behavior.

In the case where the environment is known apriori
this imitation learning formulation has a simple for-
mulation. Given a piece of direction text parsed into a
sequence of SDCs (sdc1, . . . , sdcn), the optimal control
(planning) problem in this domain is to find a path ξ
made up of segments (ξ1, . . . , ξn) where each segment
ξi corresponds to sdci. This optimal planner selects
the path ξ̂ which minimizes some cost function c eval-
uated over each segment:

ξ̂ = arg min
ξ∈Ξ

N∑
i=1

c(φ(ξi, sdci))

where Ξ is the set of all segmented paths and φ(ξi, sdci)
is a vector of features corresponding to that particular
path segment and the parsed text.

Given a demonstrated behavior in the form of a seg-
mented path ξ∗, we now wish to find the cost func-
tion c which best reproduces the demonstration. Us-
ing the behavior of the optimal planner above, we can
then formulate the LEARCH objective function, which
corresponds to the difference between the cost of the
planned path and the demonstrated path:

F [c] =

N∑
i=1

c(φ(ξ∗i , sdci))−min
ξ∈Ξ

N∑
i=1

c(φ(ξi, sdci))

This objective function is convex in c, so we can use
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Figure 3. Resulting planned behavior for the directions
in Figure 1, using only landmark information in the parsed
SDCs and objects present in the environment for cost func-
tion evaluation.

standard convex optimization techniques to find the
optimal cost function c∗ = arg minc F [c] for a wide
variety of different cost function representations.

For cost functions c parametrized as linear sums of
the features, this model generalizes the previous CRF
work (Kollar et al., 2010b; Tellex et al., 2011), where
the cost is the log-probability computed by the CRF.
However, this approach can also extend to more gen-
eral cost functions and offers a number of new advan-
tages. The previous work must be trained using diffi-
cult to generate negative examples, while our approach
need not. Our work also allows for approximate plan-
ners and, as we will discuss shortly, can even be used
to learn policies which can react to unexpected infor-
mation instead of just learning open-loop plans.

Preliminary results show that this imitation learning
approach competes with the supervised approaches
used previously. An example path planned by the sys-
tem is shown in Figure 3. Here the features used in
the cost function are entirely based on landmark in-
formation found in the direction text from Figure 1
and the semantic tags given to objects in the world.
This particular path has low cost due to the pairing of
the direction text and objects in the world (e.g., the
direction text “orange couches” and an object in the
world labeled “sofa”)

3.1. Direction Following Without a Map

When a semantically-labeled map of the environment
is not present, enumerating paths to perform inference
is impossible. Previous approaches have used a greedy
local evaluation of visible objects. This approach is
more realistic, as a robot navigating an unknown en-
vironment is unlikely to have previous knowledge of a

complete map. However, this approach only considers
two SDCs at a time and disregards any information
potentially contained in the complete directions.

One current research direction is to learn policies di-
rectly from demonstrations, to enable the robot to rea-
son about what it might see in the future and use the
entire set of SDCs. Imitation learning is especially
applicable in this setting as people are quite good at
following directions, even in buildings they have not
seen before.

An additional benefit of learning policies is the abil-
ity to give directions that include a way to recover
from mistakes. For example, consider the direction
“go down the hall and take a right, if you’ve reached
the elevators you’ve gone too far.” Being able to fol-
low these directions requires the ability to back-track
and reason about potential failures, neither of which
the current planning-based system can handle.

4. Discussion

We believe inverse optimal control is a good approach
for this domain, as it mirrors the way humans natu-
rally solve the same problem. Furthermore, collect-
ing demonstrations is straightforward, and they can
be used in a principled manner to train the system.
Learning policies directly is a promising direction for
this work, which will enable us to reason about unseen
portions of the environment and plan for contingen-
cies.
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