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Abstract

We present a new formulation for au-
tonomous (i.e. time-independent) Dynamical
Systems (DS) to perform discrete robot mo-
tions with non-zero velocity at a given target.
The proposed model ensures the convergence
of all trajectories to the target, and is inher-
ently robust to perturbations. We evaluated
the performance of our proposed method to
control right-handed swings in mini-golf.

1. Introduction

Dynamical systems provide a powerful tool for ro-
bust control of point to point robot motions from a
small set of demonstrations. They ensure high pre-
cision in reaching a desired target, yet can be eas-
ily modulated to generate new motions in areas not
seen before. Previous works on DS highlighted the
successful learning of discrete (i.e. point-to-point)
robot motions either through time-dependent or time-
independent DS (for example see (Pastor et al., 2009;
Khansari-Zadeh & Billard, 2011; 2010)). While these
works address the fundamental concern when learning
DS, i.e. stability, they can only be used for generating
motions with zero velocity at the target.

The paper presents a formulation for discrete robot
movements that models motions with both zero and
non-zero velocities. Specifically, we extend the previ-
ous formulation of our non-linear time-independent DS
(Khansari-Zadeh & Billard, 2011) to model robot mo-
tions with a desired velocity at the target. This exten-
sion allows to learn a considerably wider set of motions
ranging from pick-and-place movements to agile robot
tasks that require reaching/hitting a given target with
a specific speed and direction. The most related work
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to the proposed method was done by (Kober et al.,
2010), where they modify the Dynamic Movement
Primitive (DMP) formulation (Pastor et al., 2009) to
generate hitting motions. Here, we follow a different
direction by attempting to estimate a general form
of multi-dimensional autonomous DS, and solving the
problem from an alternative approach.

2. Hitting Motion

Consider a state variable ξ ∈ R
d that defines the state

of a robotic system. Its evolution in time is governed
by an autonomous (time-independent) DS according
to:

ξ̇ = F (ξ; θ) (1)

where θ is the set of parameters of defining F . In
our formulation, we decompose Eq. 1 into two terms,
and formalize it as a multiplication of a target field
E(ξ; θE) and a strength factor v(ξ; θv):

ξ̇ = F (ξ; θ) = v(ξ; θv)E(ξ; θE) (2)

The structure of Eq. 2 is analogous to many physical
principles where the motion of a particle in space can
be defined with the value of field (e.g. gravity, elec-
trical field, etc.) times a scalar (e.g. mass, electric
charge, etc.). The former is a property that describes
the space that surrounds a particle, and the latter de-
fines the characteristics of the particle. Similarly, in
Eq. 2, the target field describes the form of a motion
and the strength factor determines its intensity. The
DS parameters θv and θE can be learned based on
the user demonstrations. However, these parameters
should be estimated such that they 1) ensure the ac-
complishment of the task starting from any point in
space (i.e. global convergence), and 2) generate robot
motions that follow the human demonstrations accu-
rately.

To achieve our goal of having a robot motion that pro-
duces trajectories that always pass through the tar-
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get point but with a non-zero velocity, we propose to
model the target field as follows:

E(ξ; θE) =
f̂(ξ; θE)

‖f̂(ξ; θE)‖
(3)

where f̂(ξ; θE) is a globally asymptotically stable DS
that is learned by Stable Estimator of Dynamical Sys-
tems (SEDS) (Khansari-Zadeh & Billard, 2011; 2010).
Eq. 3 corresponds to a field with a constant intensity
(i.e. ‖E(ξ; θ)‖ = 1), and is defined for any point in
space except the target. To avoid the singularity at
the target, we consider the target field E(ξ; θE) = ud,
where ud is a unit vector corresponding to the desired
hitting direction. The streamlines of the target field
E exactly coincide with those from the SEDS model
f̂ ; however in contrast, the value of E is always con-
stant and equal to 1. Hence it ensures all trajectories
will path through the target with a non-zero veloc-
ity. While the target field can be used to indicate
the correct direction of movement, the strength factor
v(ξ; θv) defines the speed of movement along that di-
rection. Thus, the combination of these two term will
result in generating trajectories with similar velocity
profiles as the demonstrations.

Given a set of demonstrations, the parameters of the
target field can be learned with SEDS, and an estimate
of the strength factor can be learned using various ex-
isting regression techniques , e.g. Gaussian Process
Regression (GPR), or Gaussian Mixture Regression
(GMR), etc.

Though the function F (ξ; θ) in Eq. 2 results in hav-
ing a non-zero final velocity, it always approaches the
target from the same direction as the demonstrations.
In order to approach the target with different orienta-
tion, one can use a rotation matrix R(uc,ud) to map
the demonstration hitting direction uc to a desired hit-
ting direction ud. In this work, we assume the desired
hitting direction is given by the user or a higher level
planar. The ability to hit the ball with different mag-
nitude can also be obtained by scaling the strength
value.

3. Robot Experiments

We evaluated the performance of the presented
method on 6 degrees of freedom industrial robot
Katana-T arm for controlling right-handed swings in
mini-golf. Playing mini-golf is a non-trivial task: Even
a small inaccuracy in hitting direction may result in
missing the hole. Hitting speed should also be con-
trolled, otherwise the ball may fail to reach the hole
or pass over it. Additionally, different initial gestures
and the varied positions of both the ball and hole can

make the ability to perform a successful putt more
challenging.

For this experiment, we collected a set of demonstra-
tions by kinesthetically moving the robot arm to putt
the ball into the hole. For all demonstrations, the rel-
ative position of the ball and the hole was fixed, and
the user only shows the robot different ways of hitting
the ball starting from different initial positions (see
Figure 1(b)). The reproductions generated from the
final optimized model are illustrated in Figure 1(c).
Figure 1(d)-(f) represents the velocity profile of the
reproductions versus demonstrations along the axes
x, y, and z respectively. In these graphs the thick
dashed lines correspond to the position of the ball.
The velocity at each point was computed by multiply-
ing the strength factor v(ξ) with the target field E(ξ).
Figure 1(g) shows the sequence of the motion for one
of the reproductions. For each reproduction, after hit-
ting the ball, the dynamics were switched to a stable
dynamics guiding the arm into a resting position. For
this experiment, we considered a simple resting mo-
tion where the velocity of the arm end-effector gradu-
ally decreases along the direction of the motion until
it stops at the resting point.

By considering the frame of reference on the ball and
given a correct hitting direction, the above model can
also generalize the task to different positions of the
hole. Furthermore, Similar to the SEDS model, the
proposed model is inherently robust to external per-
turbations. The recordings of the above robot exper-
iment, its generalization ability to different ball and
hole positions, and the evaluation of its robustness to
perturbations are provided in:

http://lasa.epfl.ch/khansari/ICML11_miniGolf.mp4

4. CONCLUSIONS AND FUTURE

WORK

In this work, we presented a novel approach to gen-
erating robot motions with a desired velocity at the
target. The proposed model retains all advantages of
a SEDS model (Khansari-Zadeh & Billard, 2011): i.e.
it is globally convergent to the target and inherently
robust to external perturbations. The experiment re-
sults demonstrated the ability of the proposed model
to successfully generalize the task from different initial
positions and for various positions of the ball. The ro-
bustness of the model was also verified in the presence
of perturbations. As for future work, we are currently
working on using the proposed method in challenging
sports tasks such as playing mini-golf on rough terrains
with several obstacles.

http://lasa.epfl.ch/khansari/ICML11_miniGolf.mp4
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Figure 1. (a) Kinesthetic demonstration of putting motion
to the 6-DoF Katana-T robot. (b) Illustration of the col-
lected successful demonstrations. (c) Reproductions of the
motion from the model learned with the extended version
of SEDS. (d)-(f) Evaluation of the model’s accuracy in
estimating the desired velocity profile. The thick dashed
lines locate the position of the ball. (g) Illustration of one
of the generated motions sequences.
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