Trajectory optimization

Emo Todorov

University of Washington

Part 1:

Trajectory optimization in real time

Model-predictive control (MPC)

At every time step *t*, solve the finite-horizon trajectory optimization problem

$$\min_{u} h(x_{t+N}) + \sum_{k=t}^{t+N-1} \ell(x_k, u_k)$$

Apply the first control u_t , observe/estimate the next state x_{t+1} , and repeat.

Larger horizon *N* results in better performance but requires more computation.

The final cost h(x) should approximate all future costs incurred after time t+N, i.e. the optimal cost-to-go function (or value function).

The running cost $\ell(x, u)$ usually penalizes task errors and control energy.

There is always a plan, the plan changes all the time, and only the initial portion is ever executed.

MuJoCo: A physics engine for control

Recursive algorithms for smooth dynamics

New algorithms for contact dynamics (Todorov, *ICRA* 2010, 2011)

Parallel evaluation of trajectory costs, gradients and Hessians

Efficient C implementation

400,000 dynamics evaluations per second on a 12-core 3GHz PC, 18-dof humanoid model with 6 active contacts

A full Newton step of trajectory optimization takes 100 msec

Almost all the CPU time is spent in finite-differencing the dynamics

Application to swimming

Tassa, Erez and Todorov, work in progress

method 1: optimize only the running cost, ignore the final cost / cost-to-go

this works well when a lot of progress can be made within the planning horizon

Application to ball bouncing

Kulchenko and Todorov, ICRA 2011

method 2: use some heuristic approximation to the optimal cost-to-go

similar to evaluation function in chess; rough approximation is usually sufficient

397,000 views on YouTube !?

Application to hopping

Erez, Tassa and Todorov, RSS 2011

method 3: use offline optimization to model the optimal cost-to-go

The offline model can be obtained via trajectory optimization or ADP/RL

Outline of the algorithm

Extending the local region of validity via MPC

Stochastic nonlinear spring; the task is to move at constant speed in either direction.

control law

global minimum (dense discretization)

> 2-step MPC control law

locally-optimal limit cycle

Empirical robustness to model errors

It is hard to obtain theoretical guarantees, because MPC control laws are defined implicitly as the outcome of optimization.

un-modeled friction

Part 2:

Making trajectory optimization easier

Optimization through inverse dynamics

Standard trajectory optimization methods rely on forward dynamics (Maximum Principle, DDP, iLQG, iLDP)

However trajectory optimization may be faster using inverse dynamics:

- no need for forward integration, no instability, large time steps
- minimal representation, yet the Hessian of the cost is sparse

Represent trajectory as sequence of positions *q*

Compute velocities **v** using finite differencing

Compute controls *u* using inverse dynamics

The trajectory cost is

a.

*A*_{1,1}

 $q_{\pm 1}$

$$\sum_{k=1}^{n} \ell(q_k, v(q_{k+1}, q_k), u(q_{k+1}, q_k, q_{k-1})) + \alpha \|B^{\perp}u(q_{k+1}, q_k, q_{k-1})\|^2$$

How can we compute inverse dynamics in the presence of contacts? See Todorov, *ICRA* 2011.

Helper forces and contact smoothing

Tassa and Todorov, *RSS* 2010; Todorov, *ICRA* 2011 Erez and Todorov, *work in progress*

Under-actuation and contact discontinuities make trajectory optimization hard.

We allow some "helper forces" in the un-actuated space, and penalize them.

We smooth contacts, so that some contact forces can be applied from a distance while the ground is still hard.

inappropriate weight on helper force cost

Allowing rigid-body deformations

Mordatch and Todorov, work in progress

Independent point-mass dynamics

Costs used to (softly) enforce the dynamics:

- constant segment lengths
- no penetration
- no slip

These are mixed with regular costs:

- CoM should follow reference trajectory
- acceleration and jerk should be small

Pushing towards the goal in end-effector space

Todorov et al, IEEE BioRob 2010

joint space configuration end effector position end effector Jacobian Jacobian null space

y(q) $J(q) = \frac{\partial y(q)}{\partial q}$ N(q)

q

Push hand towards target:

 $u = k J(q)^{T} (y^{*} - y(q))$

Push hand towards target, while staying close to default configuration:

$$u = k_1 J(q)^T (y^* - y(q)) + k_2 N(q) (q^* - q)$$

Pneumatic robot (Diego-san) actuator time constants ~ 80 msec

Sequential sub-goals in end-effector / feature space

Mordatch, Popovic and Todorov, work in progress

Getting up

Simple versions can be solved directly via trajectory optimization (Erez, in progress)

The general case seems too hard for trajectory optimization, and can benefit from suitable sub-goals

