
Trajectory optimization

Emo Todorov

University of Washington

Part 1:

Trajectory optimization in real time

Model-predictive control (MPC)

At every time step t, solve the finite-horizon trajectory optimization problem

Apply the first control ut, observe/estimate the next state xt+1, and repeat.

Larger horizon N results in better performance but requires more computation.

The final cost h(x) should approximate all future costs incurred after time t+N,
i.e. the optimal cost-to-go function (or value function).

The running cost usually penalizes task errors and control energy.

() ()∑
−+

=
+ +

1

,min
Nt

tk
kkNt uxxhu 

()ux,

There is always a plan, the plan changes all the time,
and only the initial portion is ever executed.

MuJoCo: A physics engine for control

Recursive algorithms for smooth dynamics

New algorithms for contact dynamics
(Todorov, ICRA 2010, 2011)

Parallel evaluation of trajectory costs,
gradients and Hessians

Efficient C implementation

400,000 dynamics evaluations per second on a 12-core 3GHz PC,
18-dof humanoid model with 6 active contacts

A full Newton step of trajectory optimization takes 100 msec

Almost all the CPU time is spent in finite-differencing the dynamics

Application to swimming

method 1: optimize only the running cost, ignore the final cost / cost-to-go

this works well when a lot of progress can be made within the planning horizon

Tassa, Erez and Todorov, work in progress

Application to ball bouncing

A B C

Kulchenko and Todorov, ICRA 2011

method 2: use some heuristic approximation to the optimal cost-to-go

similar to evaluation function in chess; rough approximation is usually sufficient

397,000 views on YouTube !?

Application to hopping
Erez, Tassa and Todorov, RSS 2011

method 3: use offline optimization to model the optimal cost-to-go

The offline model can be obtained via trajectory optimization or ADP/RL

optimal limit cycle

quadratic approximation
to the optimal cost-to-go

MPC trajectory

Outline of the algorithm

Extending the local region of validity via MPC
Stochastic nonlinear spring; the task is to move at constant speed in either direction.

global minimum
(dense discretization)

locally-optimal
limit cycle

position

ve
lo

ci
ty

state density control law

2-step MPC
control law

Empirical robustness to model errors

upper leg
60% longer

Bun-modeled friction
It is hard to obtain theoretical guarantees,
because MPC control laws are defined
implicitly as the outcome of optimization.

Part 2:

Making trajectory optimization easier

Optimization through inverse dynamics

Standard trajectory optimization methods rely on forward dynamics
(Maximum Principle, DDP, iLQG, iLDP)

However trajectory optimization may be faster using inverse dynamics:
- no need for forward integration, no instability, large time steps
- minimal representation, yet the Hessian of the cost is sparse

qt-1 qt qt+1

vt vt+1

ut

Represent trajectory as sequence of positions q

Compute velocities v using finite differencing

Compute controls u using inverse dynamics

The trajectory cost is

How can we compute inverse dynamics in the presence of contacts?
See Todorov, ICRA 2011.

() ()() ()∑ = −+
⊥

−++ +
n

k kkkkkkkkk qqquBqqquqqvq
1

2

1,11,11 ,,,,, α

Helper forces and contact smoothing

inappropriate weight
on helper force cost

learning progress

Tassa and Todorov, RSS 2010; Todorov, ICRA 2011
Erez and Todorov, work in progress

Under-actuation and contact discontinuities make trajectory optimization hard.

We allow some “helper forces” in the un-actuated space, and penalize them.

We smooth contacts, so that some contact forces can be applied from a distance
while the ground is still hard.

Allowing rigid-body deformations

Independent point-mass dynamics

Costs used to (softly) enforce the dynamics:
- constant segment lengths
- no penetration
- no slip

These are mixed with regular costs:
- CoM should follow reference trajectory
- acceleration and jerk should be small

Mordatch and Todorov, work in progress

Pushing towards the goal in end-effector space

()
() ()

()qN
q
qyqJ

qy
q

space nullJacobian

Jacobianeffector end

positioneffector end
ionconfigurat spacejoint

∂
∂

=

Pneumatic robot (Diego-san)
actuator time constants ~ 80 msec

() ()()qyyqJku T −= *

Push hand towards target:

Push hand towards target,
while staying close to default configuration:

() ()() ()()qqqNkqyyqJku T −+−= *
2

*
1

Todorov et al, IEEE BioRob 2010

Sequential sub-goals in end-effector / feature space
Mordatch, Popovic and Todorov, work in progress

Getting up

Simple versions can be solved directly
via trajectory optimization (Erez, in progress)

The general case seems too hard for trajectory optimization,
and can benefit from suitable sub-goals

	Trajectory optimization
	Slide Number 2
	Model-predictive control (MPC)
	MuJoCo: A physics engine for control
	Application to swimming
	Application to ball bouncing
	Application to hopping
	Outline of the algorithm
	Extending the local region of validity via MPC
	Empirical robustness to model errors
	Slide Number 11
	Optimization through inverse dynamics
	Helper forces and contact smoothing
	Allowing rigid-body deformations
	Pushing towards the goal in end-effector space
	Sequential sub-goals in end-effector / feature space

