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Abstract— Dynamic Motor Primitives (DMP) are nowadays
widely used as movement parametrization for learning trajec-
tories, because of their linearity in the parameters, rescalation
robustness and continuity. However, when learning a movement
with DMP, where a set of gaussians distributed along the
trajectory is used to approximate an acceleration excitation
function, a very large number of gaussian approximations need
to be performed. Adding them up for all joints yields too many
parameters to be explored, thus requiring a prohibitive number
of experiments/simulations to converge to a solution with an
optimal (locally or globally) reward.

We propose here two strategies to reduce this dimensionality:
the first is to explore only the most significant directions in the
parameter space, and the second is to add a reduced second set
of gaussians that should only optimize the trajectory after fixing
the gaussians that approximate the demonstrated movement.

I. DYNAMIC MOTOR PRIMITIVES

Dynamic Motor Primitives [1] characterize a movement
by means of a dynamical system, using a position error, a
velocity term and an excitation function for obtaining the
acceleration profile generating the movement:

ż/τ = αz (βz (g − y)− z) + θTg(t)
ẏ/τ = z,

where y is one joint position, g the goal/ending joint position,
τ a time constant and z a rescaled velocity. In addition, θ is
the parameter vector used to learn an initial move, applied
to a set of basis functions g(t), defined as:

gi(t) =
φi(x(t))∑
j φj(x(t))

x(t)

φi (x(t)) = exp
(
−0.5(x(t)− ci)

2/di
)
,

ci, and di representing the fixed center and width of the ith
gaussian used. Also, x is a transformation of time verifying
ẋ = −αxx/τ .

With this movement representation, the robot can be
taught a demonstration movement, to obtain the weights and
gaussians of a fdemo(t) = θTg(t). However, each robot
joint will have its own DMP, which results in a very large
number of gaussians to have a good and chattering-free
approximation of the taught movement, easily having over
100 parameters for a 7 degrees-of-freedom (dof) arm. This
motivated us to look for new exploration strategies to be
able to learn movements in unstructured environments which
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cannot be simulated, and where thus it is critical to reduce
the number of experiments.

II. EXPLORING IN SIGNIFICANT DIRECTIONS

A first option is to explore in the direction of those
parameter vectors that have most influence on the trajectory.
This can be done by computing (only once), the matrix:

W =

 φ1 (x(t0)) ... φM (x(t0))
... ...

φ1 (x(tN )) ... φM (x(tN ))

 ,
M being the number of gaussians for each joint of the
robot and N the number of timesteps in the trajectory. This
matrix W will have dimension N × M , with N >> M .
If we compute its Singular Value Decomposition, we get its
eigenvectors v1, ...,vM in the parameter space (dimension
M ), with gains associated to the singular values obtained
σ1 > ... > σM . Then, instead of exploring each DMP
parameter θi, we can take the K < M most relevant
directions v1, ...,vK and, for each exploration repetition
of the movement, use an updated parameter computed as
θe = θ + ε1v1 + ... + εKvK , with εs following a normal
distribution with a predefined exploration variance.

III. DUAL-LAYER EXCITATION FUNCTIONS

Another strategy to tackle high-dimensionality in the ex-
ploration is to create a dual-layer excitation function, in the
sense that, being the DMP main equation

1

τ
ż = αz (βz (g − y)− z) + F(x(t)),

one can take F(x(t)) = θ0
Tg0(t)+θe

Tge(t), with θ0
T and

g0(t) the weights and gaussians of the excitation function
learned with the demonstrated move, and θe

T and ge(t) a
reduced set of gaussians that does not need to approximate
the learned movement but just to optimize the trajectory and
thus it is less constrained and can have wider kernels in
order to avoid oscillations coming from random exploration.
θe
T can be initialized to zero and be updated as in any

learning algorithm in literature, such as policy gradients [2]
or path integral approaches [3]. Experimental results using
both strategies will be presented at the workshop
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