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1 Motivation

Humans and animals show a remarkable level of proficiency
in their ways of locomotion. They exploit the dynamics of the
whole body to perform a variety of motions such as jumping
and running. The nature of legged robots raises big challenges
for controlling these systems. High degrees of freedom (DOF)
and highly nonlinear non-smooth dynamics (due to interaction
with the environment) count amongst these difficulties. Our
goal is to perform highly dynamic jumping and hopping ma-
neuvers with a robotic leg while optimally exploiting the ca-
pabilities of the hardware in terms of maximum jump height,
jump distance, and energy efficiency. We build on our plat-
form ScarlETH [1], an articulated robotic leg which is elec-
trically driven in the hip and knee joints by highly compliant
Series Elastic Actuators (SEA) [2].

2 State of the Art

We have seen many different approaches to optimal control
of legged robots, e.g. neural networks [3], however, most of
which are restricted to simulations. In a closely related work
[4], a genetic algorithm is used to evolve a guided vertical
jump for a simulated leg with a compliant knee joint. Di-
rectly applying the simulation-based trajectories to the physi-
cal system is usually unsuitable as models are notoriously dif-
ficult to obtain. As a result, a feedback controller is necessary
which leads to suboptimal performance as an artificial pat-
tern is forced on the system. As an alternative, reinforcement
learning can be applied online on a real robot and promising
results have been presented, e.g. in [5]. While classic rein-
forcement learning algorithms do not scale suitably to high
dimensions, recent developments have overcome this limita-
tion with direct learning of a control policy from trajectory
rollouts [6].

3 Own Approach

We generate the control policies with reinforcement learning
based on the direct policy learning method Policy Improve-
ment with Path Integrals (PI2) [7]. This algorithm has shown
to perform well in high-dimensional continuous state spaces
and does not rely on the computation of gradients which are
sensitive to noise. The control policy is parameterized with
gaussian basis functions which are updated in the learning
procedure using random exploration rollouts.
We extend the application range of PI2 from typically slow
reaching, grasping and manipulation tasks [8, 9] to highly dy-
namic maneuvers. We directly parameterize the motor veloc-
ity trajectories of the SEA and do not enforce joint position
or torque tracking with an additional controller. This way, the
learning algorithm learns to excite the inherent dynamics of
the system. In order to overcome the model discrepancies, we
deploy a combination of simulation and hardware based learn-
ing. The simulation allows to quickly converge to a trajectory
suitable for the dominating dynamics of the system while the
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Figure 1: Learning progress of the vertical jump

optimization on the real robot compensates for the model in-
accuracies.

4 Current Results

We have implemented our approach for different learning
tasks. In a first task, the goal is to learn single jumps from a
resting posture with maximal height while keeping the touch-
down offset (jump distance) to a minimum. The control pol-
icy consists of the parameterized desired motor velocity tra-
jectories for hip and knee motor with a total of open 10 pa-
rameters. Figure 1 shows the progress of the two step learn-
ing framework starting from a manually tuned initial policy
(black). While the simulation based policy determined the
main form of the trajectory (blue), the optimization on the
hardware shows a further significant improvement (red). The
algorithm has converged to a characteristic countermovement
jump in which the actuators are pre-activated and the body is
first lowered to temporarily store energy in the joint springs.
This energy is then released during an explosive upwards mo-
tion before lift-off.
We have extended the purely vertical jump to learn jumps with
a defined height and different distances. By punishing slip of
the foot during the thrust phase in the cost function, ScarlETH
learns to increase the vertical force on the foot in order to
achieve a higher horizontal forces that propel the system to
maximal jump lengths. We have created a motion library with
different jump lengths and interpolation allows us to reach in-
termediate lengths with high precision.
In another task, the control parameters of a robust periodic
hopping controller are optimized to maximize energy effi-
ciency. Here, we use PI2 to learn a time-independent con-
trol policy with which the algorithm can find an optimal hop-
ping frequency. The algorithm is shaping a non-linear virtual
spring characteristic while maintaining the robustness of the
controller.

5 Best Possible Outcome

In the future, we will use the presented framework to learn
jumping, hopping and running maneuvers on our quadruped
robot StarlETH [10].
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