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I. PROBLEM FORMULATION

Consider a control system with state x ∈ X , inputs u ∈ U and
dynamics described by an ordinary differential equation subject
to inequality constraints:

ẋ(t) = f(x(t), u(t)), F (x(t)) ≥ 0. (1)

A complete trajectory of the system is written as π : [0, T ] →
X × U for some finite time T > 0 so that π(t) = (x(t), u(t))
encodes both the state and controls at time t. The goal is to
compute the optimal control signal u∗(t) driving the system
from its initial state x0 ∈ X to a given goal region Xg ⊂ X
while minimizing a given performance measure. Let P denote
the space of all feasible trajectories satisfying the dynamics, con-
straints, and boundary conditions. The objective is to compute

π∗ = argmin
π∈P

J(π), where J(π) =

∫ τ(π)

0

C(π(t))dt,

where τ(π) gives the trajectory time duration and C is a
given cost typically encoding time and control effort, e.g.
C(x(t), u(t)) = 1 + λ‖u(t)‖2 with a chosen weight λ ≥ 0.

II. DYNAMICAL SYSTEM REPRESENTATIONS
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Fig. 1. a) various methods for local trajectory generation: starting with simple
but suboptimal stabilization, including methods exploiting dynamical structures,
to most general but least efficient numerical optimal control; b) examples of
such techniques that we have constructed in the context of autonomous vehicle
planning and control.

Each trajectory is parametrized using N number of “way-
points” and a mapping ϕ : Z → P reconstructing the continuous
trajectory π, i.e.

z = (x1, ..., xN ) ∈ Z = XN ⇔ π(t) = ϕ(z, t)

The mapping implicitly encodes a local dynamically feasible
connection method between states xi and xi+1. Thus, a given
parameter z corresponds to a unique trajectory composed of local
connections between (x0, x1), (x1, x2), ..., and (xN ,Xg).

III. PROBABILISTIC TRAJECTORY OPTIMIZATION

Our approach employs an importance density q(Z) over the
space of parametrized trajectories and adapts the density online
until its mass becomes concentrated around the approximately
optimal trajectory z∗ = arg minJ(z). This is accomplished by
computing the probabilities:

P(J(Z) ≤ γ) : cost of a trajectory is less than γ,
P(F (Z) ≥ 0) : trajectory is feasible,

iteratively while automatically lowering the cost γ until conver-
gence.
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Fig. 2. Randomized trajectory optimization using an adaptive distribution that
automatically focuses in high-performance regions. The task is to compute a
time-optimal obstacle-free trajectory for a helicopter modeled as a non-trivial
underactuated systems in 3-D.

A. Optimization through Density Estimation
The first approach is to compute q(z) directly through the

minimization minq KL(q∗ || q), where

q∗(z) =
I{J(z)≤γ∧F (z)≥0}p(z)

P(J(Z) ≤ γ) · P(F (Z) ≥ 0)
, (2)

where p(Z) is some base measure on Z that for in-
stance can incorporate prior knowledge about desirable tra-
jectories. In computational convenience and efficiency we
assume a parametric distribution q(z) = p(z; v) where
v ∈ V is the parameter. Problem (2) is solved ap-
proximately by finding the optimal parameter v∗ according
to v̂∗ = argmaxv∈V 1

N

∑N
i=1 I{J(Zi)≤γ∧F (Zi)≥0} log p(Zi, v),

where Z1, ..., Zn are i.i.d. samples from a base measure p(·, v0).

B. Optimization through Function Approximation
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Fig. 3. A simple optimal planning problem solved using Gaussian Process
models of the cost J(x) and constraints F (x). The plots show the evolved
models after 20 iterations. Remarkably, the importance density q clearly indicates
that the optimal region to select x are the states around the border of the obstacle
that are reachable from both start and goal.

The second approach is to construct probabilistic models of
the functions J(z) and F (z) in order to predict the performance
of unobserved trajectories. In this case the probability density
will be artificially constructed according to

q(z) ∝ P(J(z) < γ) · P(F (z) ≥ 0), (3)

where here J and F are regarded as random functions for each
fixed parameter z. We will assume that the processes J(z) and
F (z) have normal marginal distributions, i.e. they will be mod-
eled as Gaussian Processes (GP). This is particularly convenient
for constructing q in (3) through the simple expressions

P(J(z)≤γ)=Φ

(
γ − E[J(z)]√

V[J(z)]

)
, P(F (z)≥0)=Φ

(
E[F (z)]√
V[F (z)]

)
,

where Φ(·) is the standard unit-normal CDF, and E[·] and
V[·] denote expectation and variance. A simple example of a
preliminary study is shown on Figure 3.


