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Our work is motivated by applications where robots need
to robustly complete navigation and manipulation tasks in
the presence of significant uncertainty, which would require
the robot to perform information gathering actions in order
to minimize the effects of uncertainty. This problem is
often formalized as a Partially Observable Markov Decision
Process (POMDP), finding globally optimal solutions for
which is known to be intractable. Belief space planning,
which applies traditional planning and control algorithms in
an augmented belief space comprising of both the robot state
and the uncertainty associated with it, has emerged as an
effective approach for computing locally optimal solutions
to the POMDP problem [2].

However, for planning in belief spaces, collision detection
needs to be performed in a probabilistic sense by considering
collisions with respect to all possible states that the robot
could be in. Prior work has only considered point robots or
spherical approximations of the robot geometry to simplify
collision detection in the belief space, thus limiting their
applicability. We extend the belief space planning framework
to plan for general robots such as articulated robots operating
under the assumption of Gaussian models of uncertainty.

Our key insight for dealing with collisions in belief spaces
involves the use of sigma hulls, which are convex hulls of
the robot geometry transformed according to the unscented
transform [1] of the Gaussian uncertainty. The unscented
transform also serves the dual purpose of propagating the
Gaussian belief using an unscented Kalman filter (UKF).

We adopt the approach of Platt et al. [2] to use sequential
quadratic programming (SQP) to compute locally optimal
trajectories in the belief space. As opposed to the standard
practice of dealing with collisions as costs in the optimiza-
tion framework, which can often lead to tedious parameter
tuning for each problem to get out of collision, we strictly
enforce them by incorporating them as (hard) constraints
using a penalty method [3]. We show that the collision
avoidance constraints can be locally approximated by convex
constraints using the sigma hulls, and we derive how to
efficiently compute this convex approximation analytically.

Fig. 1 provides an overview of our framework for Gaussian
belief space planning framework for general robots. We for-
mulate the objective in terms of costs that penalize the uncer-
tainty in the robot state and minimize the total control effort
expended along the trajectory. We also impose constraints
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Fig. 1. Overview of our Gaussian belief space planning framework.
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Fig. 2. Simulated trajectory traces for a 7-DOF manipulator (Barrett WAM
arm) moving in a constrained environment with obstacles (blue). The robot
localizes itself based solely on distance of the robot end-effector from
a landmark (yellow sphere) in the environment, with the signal strength
decaying quadratically with the distance. (a) Naı̈ve trajectory optimization
[3] produces a trajectory that avoids collisions with obstacles but is oblivious
to the uncertainty in the robot state. (b) With Gaussian belief space planning,
the robot executes a trajectory that leads it first to the landmark for better
localization before reaching the target with significantly reduced uncertainty.

on the optimization for collision avoidance and to ensure
that the belief dynamics are satisfied. The optimization then
computes a locally optimal trajectory in belief space. As
is standard in nonlinear optimization for control, we follow
the model predictive control (MPC) paradigm of re-planning
after every time step based on the belief state estimated using
observations obtained during execution. This allows the robot
to correct for perturbations as they occur while operating
under considerable uncertainty.

Fig. 2 shows the advantages of using belief space plan-
ning over naı̈ve trajectory optimization methods [3] for a
7-DOF manipulator moving in a constrained environment
with obstacles. Belief space planning explicitly accounts for
the uncertainty in the robot state and is able to compute
motion plans that maximize information gathering actions
(visiting the landmark) to minimize the effects of uncertainty.
Our method computes a locally optimal trajectory in a 35
dimensional belief space with a high fidelity articulated robot
model in under 10 seconds.

In conclusion, we proposed a method for efficiently deal-
ing with collisions while planning for articulated robots in
Gaussian belief spaces using sigma hulls. We believe that
this is an important first step to facilitate efficient belief space
planning for a large class of robots including household and
surgical robot manipulators and humanoid robots.
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