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Abstract—Movement primitives are a promising approach
for modular and re-usable movement generation, and suit-
able for data-driven movement acquisition. Beneficial properties
such as simultaneous activation of multiple primitives, optimal
movement encoding for stochastic systems, and generalization
to new targets, are absent in most common approaches. We
propose a probabilistic approach for generating, learning, and
re-using movement primitives that overcomes these limitations.
We represent a movement primitive as a probability distribution
over trajectories. As a consequence, we can activate primitives
simultaneously, smoothly blend together, generalize to new target
states and encode optimal trajectories in stochastic systems. We
compare our approach to the existing state-of-the art and present
real robot results for learning from demonstration.

Movement primitives (MP) are considered to be a state
of the art approach for learning robot movement generation.
The most commonly used MP representations use time- or
phase-dependent policies [1], like the widely used dynamic
movement primitive (DMP) approach [1]. DMPs are based
on second-order dynamical systems, which are composed of a
linear spring-damper system and a learnable non-linear forcing
function. Integrating the dynamic system results in the desired
trajectory which is followed by feedback control laws.

However, there are properties for a MP representation that
are not fulfilled by the DMP approach. Most importantly,
multiple DMPs for the same degrees of freedom (DoF) cannot
be activated simultaneously without further considerations on
prioritized control. Additionally, a DMP cannot encode opti-
mal movement generation in the presence of stochasticity. For
stochastic systems, following a single trajectory is always sub-
optimal [2] as one cannot adapt the variance of the resulting
trajectory distribution. DMPs can be efficiently used to imitate
a single trajectory, however, how to generalize the shape of a
DMP from multiple demonstrations is an open problem.

We propose a probabilistic approach to movement primitives
which we call Probabilistic Movement Primitives (ProMP).
ProMPs are represented as a distribution over trajectories
p(7). They do not require a parametric representation of the
control policy, and a stochastic feedback controller that exactly
follows the given distribution is obtained in closed form. Using
trajectory distributions allows us to encode optimal behaviors
for stochastic systems as well. Trajectory distributions can
also be easily combined by calculating the “intersection”
of two distributions as a product of them. This operation
allows for a simultaneous activation of several primitives or a
smooth switching from one activated primitive to the next, as
illustrated in Figure 1. We can also condition p(7) to reach a
desired position or velocity at any point in time as long as the
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Table 1
QUALITATIVE COMPARISON OF PROMPS AND DMPs.
Property DMPs ProMPs
Co-Activation - product of plé (7)
Modulate final positions heuristics conditioning
Modulate final velocities heuristics conditioning
Modulate via-points - conditioning

Optimality
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Learning
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Figure 1. (a) Reproduced generalization to different target states by
conditioning. (b) Blending (green) of movement primitives. In the beginning,
the red primitive is active. At ¢ = 0.5s, we smoothly switch the activation to
the blue primitive and the red primitive is ignored.

position lies within the distribution. The distribution adapts
to the new desired position while simultaneously trying to
stay close to the demonstrations. As a result, generalization to
new targets or via-points is learned from demonstrations. The
generalization to different desired target positions is shown in
Figure 1. Our MPs can be easily obtained from imitation, they
can be used for both point-to-point and rhythmic movements,
and the speed of the movement can be adapted by replacing
time by a phase variable. We summarize the basic properties
of the ProMPs in comparison to the DMPs in Table I. We
evaluated our approach on two real robot tasks with a 7-DoF
humanoid arm.
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