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One of the barriers to widespread deployment of au-
tonomous robots—whether in factories, hospitals, or
homes—is the substantial amount of effort and skill it
takes to program them to perform new tasks. A large
part of this effort must be repeated whenever the task is
changed.

When we teach children to tie their shoelaces, we don’t
need to provide an extremely precise description of the
task, nor do we need to enumerate all possible states and
transitions—we teach them by example. Wouldn’t it be
nice if we could teach robots the same way? (But without
the tears and frustration.)

This paper is concerned with teaching robots to per-
form manipulation tasks by demonstration. In other
words, a human performs the task one or more times
(by teleoperation or directly guiding the robot’s end-
effector), and a learning algorithm extracts the essence of
these demonstrations so the robot can perform the task
autonomously in a new situation.

We introduce a new approach for teaching robots from
demonstrations, which emphasizes the geometry of the
manipulated objects. Our method is motivated by prob-
lems where there is high variability in the manipulated
objects, i.e., in their shapes, sizes, and poses. Such
variability is often unavoidable when manipulating de-
formable objects, because of their high-dimensional con-
figuration spaces. Our main running example is tying
knots in rope, which is a proxy for several motivating
tasks of practical importance, such as tying fasteners
around wire bundles (common in aerospace applications)
and surgical suturing. We also consider a variety of ma-
nipulation tasks involving household objects.

Our approach starts out by finding a non-rigid registra-
tion between the geometry (points, curves, surfaces) of
the training scene and the testing scene, i.e., the new con-
figuration of objects that the robot must act on. While
registration is only concerned with the objects and their
environment, we show that it is possible to meaningfully
extrapolate to the entire space for our particular choice of
non-rigid registration. This in turn enables using the ex-
trapolated registration, which informally could be called
a “space warping,” to transform (=generalize) the robot
tools’ pose trajectories from the demonstration scene to
the new scene. While non-rigid registration has been
extensively studied for applications such as 3D modeling
and medical image analysis, to ensure meaningful gripper
pose trajectories we present a new objective criterion for
the registration procedure that is more directly suitable
for robotic applications.

Our method for generalizing trajectories can be used
as part of a closed-loop system for completing an ex-
tended task such as knot tying. In brief, the robot re-
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Figure 1: Robot learning and executing overhand knot, the sim-
plest of five knots taught using our algorithm. Top row: human
demonstration by kinesthetic teaching. Middle row: red: point
cloud from the demonstration, blue: point cloud from the test,
green: warping function applied to demonstration points (which
for an accurate registration mostly fall right on top of blue), yellow
lines: warping function applied to a uniform grid in demonstration.
Bottom row: the robot applies the learned trajectory in the test
situation. Note that this procedure is split into three steps, and
registration is performed three times.

peats the following steps: (1) looks up the nearest sit-
uation in the demonstrations by comparing the point
clouds, (2) adapts the demonstrated trajectory to the
current situation, and (3) executes it, with the help of
inverse kinematics and possibly motion planning. We ex-
perimentally validate this method in the setting of knot
tying, enabling a two-armed robot to reliably tie several
kinds of knots. This vision-based knot-tying procedure
can handle different starting conditions and rope param-
eters, and it recovers from errors.

Using the same method for generalizing trajectories,
we enable a robot to perform a variety of tasks in the do-
main of household chores, in which the robot must adapt
to variations in the shapes and sizes of the manipulated
objects. Most of these tasks involve a tool or held ob-
ject, respectively; our framework naturally handles these
tasks by treating the held object as the end-effector of
the robot. Similarly to how we adapt to variation in the
target objects, we can adapt to variation in the tool by
using non-rigid registration to identify the end-effector
frame of the new tool.

Our approach to trajectory generalization has the fol-
lowing desirable attributes, compared to some other
learning methods:

• It operates directly on point clouds–the outputs of
our sensor hardware, rather than requiring the user
or programmer to define the relevant frames or some
featurization of the input.

• It requires a very small number of demonstrations.
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