
Finding Locally Optimal, Collision-Free Trajectories with Sequential

Convex Optimization
John Schulman, Alex Lee, Ibrahim Awwal, Henry Bradlow, Pieter Abbeel ∗

Trajectory optimization algorithms have two roles in
robotic motion planning. First of all, they can be used
to smooth and shorten trajectories generated by some
other method. Second of all, they can be used to plan
from scratch: one initializes with a trajectory that con-
tains collisions and perhaps violates constraints, and one
hopes that the optimization converges to a high-quality
trajectory satisfying constraints. Using an optimization
algorithm to plan from scratch is an especially attrac-
tive option in problems with many degrees of freedom
(DOF), since the computation time scales favorably with
the number of DOF.

We’ll consider two types of motion planning problems,
both of which can be solved with our method. Let N be
the number of degrees of freedom of the robot (including
its pose, if it has a moveable base), and let M be the
number of actuated degrees of freedom. For example,
in a walking humanoid, the joints are actuated but the
six-DOF pose is not, so N = M + 6.

1. Kinematic planning: the optimization problem
has T × N variables—the joint angles at each
timestep.

min
θ1:T

∑
t

‖θ̇t‖2 + other costs (1)

subject to

no collisions

kinematic constraints, e.g. end-effector pose

2. Dynamic planning: the optimization problem has
T × (N + M) variables—the joint angles θt and
torques (or generalized forces) τt at each timestep.
We also include the dynamics constraint at each
timestep

M(θt)θ̈t + C(θt, θ̇t) = τt (2)

Two of the key ingredients in trajectory optimization
for motion planning are (1) the numerical optimization
method, and (2) the method of checking for collisions
and penalizing them. For numerical optimization, we
use sequential convex optimization, with `1 penalties for
equality and inequality constraints. This approach in-
volves solving a series of convex optimization problems
that approximate the cost and constraints of the true
problem, which is non-convex. For collisions, we compute
signed distances using convex-convex collision detection,

∗UC Berkeley, EECS Department

Saturday, February 2, 13

Figure 1: Several problem settings were we have used our algo-
rithm for motion planning. Top left: planning an arm trajectory
for the PR2 in simulation, in a benchmark problem. Top right:
PR2 opening a door with a full-body motion. Bottom left: indus-
trial robot picking boxes, obeying an orientation constraint on the
end effector. Bottom right: humanoid robot model (DRC/Atlas)
ducking underneath an obstacle while obeying stability constraints.

and we ensure the continuous-time safety of a trajectory
by considering the swept-out volume. These two aspects
of our approach are complementary, since our collision
checking method yields a polyhedral approximation of
the free part of configuration space, which can be directly
incorporated into the convex optimization problem that
is solved at each iteration of the optimization.

The first advantage of our approach is speed. Our
implementation solves typical arm planning problems in
around 100−200 ms and solves problems involving many
more degrees of freedom in under a second. This is
largely enabled by our novel formulation of the the colli-
sion penalty, which guarantees safety in continuous time
by considering swept-out volumes. This cost formulation
has little overhead in collision checking and allows us to
use a sparsely sampled trajectory. The second advantage
of our approach is its reliability—it solves a surprisingly
large fraction of planning problems. In our experiments,
our algorithm solved a larger fraction of problems than
any of the sampling-based planners, which were given a
ten second time limit. The third advantage of our ap-
proach regards path quality: once the trajectory is free
of collisions, our approach will treat collision avoidance
as a hard constraint (i.e., keep a certain safe distance
from obstacles.) Our algorithm will converge to a lo-
cally optimal solution subject to this constraint, without

1



compromising the other objective criteria. The fourth
advantage of our approach is flexibility: new constraints
and cost terms can easily be added to the problem since
the underlying numerical optimization method is numer-
ically robust, and it can deal with initializations that are
deeply infeasible.

We performed a quantitative comparison between our
algorithm and several open-source implementations of
motion planning algorithms, including sampling based
planners from OMPL, as well as an implementation of
CHOMP. Overall, our algorithm was not only faster than
the alternatives, but it solved a larger fraction of the
problems. All planners were given a ten second time
limit and run with default parameters.

Our source code is available as a BSD-licensed open
source package and can be found at https://github.

com/joschu/trajopt. (See README for documenta-
tion link.)

2

https://github.com/joschu/trajopt
https://github.com/joschu/trajopt

