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Although unimanual regrasping has been studied exten-
sively, either by regrasping in-hand or by placing the object
on a surface for each regrasping phase, bimanual regrasping
has been less popular. Unimanual regrasping algorithms are
inadequate for human-like service robots, however, since
they require complex high DoFs robotic hands or perform
time-consuming operations (e.g., placing the object on a
table to regrasp it). Bimanual regrasping, which consists
in regrasping the object in the air using two manipulators,
can alleviate the problems found in unimanual regrasping
techniques and is used frequently by humans but rarely by
robots. Bimanual regrasping is most often exploited when
an object in one of the manipulator’s reachability space
needs to be moved to a location in the other manipulator’s
reachability space. Even though bimanual regrasping has
seen little attention, it is a crucially beneficial behavior
for service robots since it not only saves time performing
certain tasks but also mimics human behavior. Additionally,
bimanual regrasping does not require complex end-effectors
and does not impose restrictions on the manipulators used.

Fig. 1. High-level overview of proposed bimanual regrasping algorithm.

As shown in Fig. 1, the algorithm is composed of three
components: Image Processing, Grasp Synthesis, and Opti-
mization. The Image Processing, the purpose of which is
to find two good grasping points in image space, exploits
a stereo camera along with a state-of-the-art supervised
machine learning algorithm that we modify to accommodate
bimanual regrasping. The two points correspond to the points
that each manipulator will use when regrasping. We use
a single stereo image as input, IR, from which we can
calculate the corresponding point cloud, CG, thanks to stereo
vision. Using the image, a binary classifier exploiting logistic
regression extracts two good grasping points, one for each
arm, and converts them to Cartesian coordinates, PG

Rini and
PG

Lini. The Grasp Synthesis component takes IR, CG, PG
Rini,

and PG
Lini as input and outputs appropriate orientations for

the right and left end-effectors, RG
Rini and RG

Lini, to grasp the
object at the points PG

Rini and PG
Lini. This process works with

a supervised learning unimanual grasp planer that combines
multi-class SVMs, image moments, orthogonal regression,
and nearest neighbor searches. The Optimization component

searches the reachability spaces of the arms to find the
most efficient regrasping configurations, outputting the ma-
nipulators’ configuration, qRopt and qLopt. Specifically, the
optimization performs a six-dimensional search space (i.e.,
manipulator’s X, Y, Z, Roll, Pitch, Yaw) with the Nelder-
Mead algorithm, which does not require an objective function
with a corresponding derivative. Indeed, we simply use a cost
function that minimizes the manipulators’ joint movements,
consequently reducing the task’s execution time.

Fig. 2. Screenshots of our robot regrasping different objects.

For the experiments, 10 varying configurations of 4 objects
were regrasped by our robot, consisting of a static torso
with two 7 DoFs Barrett WAM arms and 4 DoFs Barrett
hands. First, we manually dictate the grasping positions and
orientations of the manipulators (i.e., PG

Rini, PG
Lini, RG

Rini

and RG
Lini), consequently removing potential errors from

the Image Processing and Grasp Synthesis components and
investigating the Optimization component on its own. Being
successful 87.5% of the time, with the cause for every failure
being positional errors from the manipulator, it is clear that
the Optimization component yields valid results. Second,
we analyze the end-to-end algorithm by incorporating the
Image Processing and Grasp Synthesis components back
into the algorithm, a few snapshots of which are shown
in Fig. 2. Overall, the end-to-end algorithm performed very
well, successfully completing 75% of the experiments. The
majority of the errors were attributed to the Grasp Synthesis
component failing to provide good orientations for one of the
manipulators. We additionally compared the Optimization
algorithm with four grid-based search algorithms (Brute
Force, Random Grid Search, Reachability Subspace, Hier-
archical Search). The Optimization algorithm is not only
extremely efficient, providing solutions more than six times
faster than the second-fastest algorithm, but also competitive
with the Brute Force approach. In fact, the Optimization
algorithm finds a better solution than Brute Force and the
other algorithms 84.61% and 100% of the time, respectively.
The Brute Force algorithm is not a viable solution, however,
because it takes 72.5 hours on average. Conversely, our entire
algorithm, including the Image Processing, Grasp Synthesis,
and Optimization, runs in 329ms.


