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Abstract— This work addresses the problem of planning the
reach-to-grasp trajectory for a robotic arm and hand, when
there is uncertainty in the pose of the object being grasped. If
the object is not in its expected location, then the robot may still
gain additional information about the object pose by making
tactile or haptic observations if a finger or other part of the
hand collides with part of the object during the reach-to-grasp
operation. Therefore, it is desirable to plan the reach-to-grasp
trajectory in such a way that it takes into account and exploits
knowledge about the size and shape of the pose distribution
associated with the target pose uncertainty. Here we propose a
reach-to-grasp trajectory planning algorithm which addresses
this exploration-action problem by trading off a smoothness
constraint against likelihood of making haptic observations.

I. INTRODUCTION

We are interested to generate reach-to-grasp trajectory
plans using a fixed-dimensional sampled representation of
the uncertainty in pose of the manipulandum (object to be
grasped) as suggested in [2]. We wish to build trajectories
in a continuous state and action spaces that maximise in-
formation gain during reaching-to-grasp, by maximising the
difference between observations that would be expected if
the manipulandum was in its most likely hypothesis state
and the observations that would be expected in any other
state, sampled from the distribution of possible states which
represents manipulandum pose uncertainty. This approach
generates more robust trajectories in the face of uncertainty,
by exploring the uncertain region in order to gain information
about manipulandum pose while simultaneously attempt-
ing to reach the grasping goal state (maximum likelihood
hypothesis of manipulandum pose). We have successfully
extended this approach up to planning in 6-dimensional
spaces, where a 6-DOF robot manipulator equipped with
a 15-DOF five-finger humanoid hand plans trajectories that
result in an efficient tactile exploration of the uncertain region
during reach-to-grasp actions. Note that our entire system
is composed by 21-DOF, however we are not interested in
changing the configuration of the hand during the reach-
to-grasp planning because intuitively we assume that an
open configuration of the hand is the most efficient way
for a tactile exploration. Nevertheless our planner includes
a collision detection and observational model for the entire
system as well as an inverse kinematic planner at the end of
the reach-and-grasp trajectory in order to close the fingers.

This work is supported by FP7 ICT project GeRT (248273)
C. Zito, R. Stolkin, M. Kopicki, J. L. Wyatt are members of the Intelligent

Robotics Lab, School of Computer Science, University of Birmingham, UK
(email: {cxz004,stolkinr,msk,jlw}@cs.bham.ac.uk)

M. Di Luca is a member of Centre for Computational Neuroscience and
Cognitive Robotics, School of Psychology , University of Birmingham, UK
(email: m.diluca@cs.bham.ac.uk)

II. TRAJECTORY PLANER

A. Observational model

The robot should be able to gain additional information
about the pose of the manipulandum (object to be grasped)
if it makes tactile observations when parts of the hand make
contact. We model such observations as the likelihood of
reading a contact on the force or torque sensors of the robot,
yt = h(xt, p

i), i ∈ [1, k]. Mathematically we can define the
function h(·) as an exponential distribution,

h(x, pi) =

{
η exp(−λ|x− pi|2) if 0 < |x− pi|2 ≤ dmax

0 otherwise

where dmax describes a maximum range in which the
likelihood of reading a contact is not zero, η is a normaliser
and | · |2 is the Euclidian norm on 3D space. Therefore the
expected sequence of observations over a trajectory, u1:T−1,
is:

ht(x, u1:t−1, p
i) = (h(F2(x, u1), pi)T , h(F3(x, u1:2), pi)T ,

. . . , h(Ft(x, u1:t−1), pi)T )T

where is the robot configuration at time t if the system begins
at state x and takes action u1:T−1.

B. Planning a trajectory to maximize information gain

The implementation of our planner uses a Probabilistic
Roadmap (PRM) [1] to plan trajectories and detect colli-
sions. Initially a random graph, G, of robot configuration
in obstacle-free space is generated. Given a pair xroot, xgoal
which describe the root and goal state of the trajectory, the
PRM algorithm finds a joint space trajectory as follows:
• adds xroot to G
• finds a obstacle-free configuration x̂goal which is a

reachable goal configuration for the robot
• evaluates each node x in the graph G according to

c1(x, xroot, x̂goal) =αd(x, xroot)

+ βd(x, x̂goal) + γdcfg(x)

• starting from xroot finds all its neighbouring nodes
within a given threshold and compute the follows cost-
to-go function

c2(x, x′, xroot, x̂goal) =δdbound(x, xroot)

+ βd(x′, x̂goal) + γdcfg(x)

• finds a path from xroot to x̂goal which minimises c2(·)
using A* algorithm

where α, β, γ, δ ∈ R, d(·) is a distance function in
SE(3) which combine rotational and transitional distances,



Fig. 1: A 6-axis arm with 15DOF humanoid hand attempts to grasp a cylindrical object under various kinds of uncertainty. White lines
denote trajectories of fingertips. White cylinder shows the maximum likelihood pose of the manipulandum. Blue cylinders are particles
sampled from the pose distribution of the manipulandum. The image shows three different situations: (a) the system has no uncertainty
over the manipulandum pose and plans a smooth, straight trajectory towards the goal state, which is a pre-shaped side grasp; (b) uncertainty
prevalently along the x-axis (red axis); (c) uncertainty prevalently along the y-axis (green axis).

bbound(·) is an ad-hoc distance function that takes into
account also distance in the joint space and has the good
property of penalise pair of configurations far away in
the joint space and dcfg(·) is a function which penalises
dangarous configurations of the robot (i.e. close to joint
limits).

Our main contribution is the definition of a new set of
heuristics which encode the uncertainty over the object pose.
We define,

c̄1(x, xroot, x̂goal, Q) =αd(x, xroot)

+ βdQ(x, x̂goal) + γdcfg(x)
(1)

and

c̄2(x, x′, xroot,x̂goal, Q, p
1:k) =

δJ(x, u1:T−1, p
1:k)dbound(x, xroot)

+ βdQ(x′, x̂goal) + γdcfg(x)

(2)

where Q is the covariance matrix of our sampled states, for
any column vector a ∈ Rn, dQ(a) =

√
aTQ−1a is the

Mahalanobis distance, u1:T−1 is the trajectory which connect
x to x′ and J(x, u1:T−1, p

1:k) ∈ (0, 1] is a factor which
rewards trajectories with a large difference between expected
observations if the object is at the expected location, p1,
versus observations that would be expected if the object is
at other poses, p2:k, sampled from the distribution of poses
associated with the object’s positional uncertainty:

J(x, u1:T−1, p
1:k) =

1

k

k∑
i=2

e−Φ(x,u1:T−1,p
i) (3)

where:

Φ(x, u1:T−1, p
i) = ||ht(x, u1:T−1, p

i)−ht(x, u1:T−1, p
1)||2Q

for each i ∈ [2, k] and Q is the block diagonal of measure-
ment noise covariance matrices of appropriate size.

Note that our current observational model is designed to
not affect the Eq. 2 when the likelihood of observing a tactile
contact is zero. In fact, for robot configurations in which

the distance to the sampled poses is larger than a threshold,
dmax, the cost function J(·) is equal to 1. However we also
encode uncertainty in the second factor of our heuristics,
dQ(·), which evaluates the expected distance to the goal
configuration. In this way the planner behaves sensibly in
the early stages of the trajectory, when the robot is still too
far away from the object to observe any contacts.

III. RESULTS

We have tested this algorithm in a simulation environment,
in which a 6-axis arm, equipped with a 15 DOF five-fingered
humanoid hand attempts to grasp a cylindrical object, subject
to various shaped distributions of pose uncertainty. In our
experiments we assumed a zero-Gaussian noise with variance
of 4 cm along the major axis of noise and 0.25 cm along
the minor axis. Fig. 1 shows the resulting reach-to-grasp
trajectories produced by our planner. In Fig. 1(a), there is
no uncertainty, and so the planner produces the most direct
reach-to-grasp path. In Fig. 1(b), there is few uncertainty in
the y direction, but lots of uncertainty in the x direction,
hence the planner produces a trajectory in which the hand
sweeps towards the cylinder along the x axis, thereby max-
imizing the chance of making contact if the cylinder is not
in its expected location. In Fig. 1(c), there is few uncertainty
in the x direction but lots of uncertainty in the y direction,
hence the hand sweeps towards the cylinder along the y axis,
again maximizing the chance of m, should the cylinder not
be in its maximum likelihood expected pose.
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