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Introduction

e Simulation can be a powerful tool

o Typically used Off-Line due to real-time
constraints

« However, It can be a powerful On-Line tool as
well

 Can be used In predictive, Feed-Forward way for
grasping and manipulation tasks
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Timeline

Past:

 Low Dimensional Posture Subspaces: Eigengrasps
e Online Grasping

« Data Driven Grasping

Present:
« Blind Grasping using Tactile Feedback
* Improved Grasp Quality Measures

Future:
« Brain Control Interfaces for Grasping
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Eigengrasps

e (Can be seen as generalization of grasp taxonomy [Napier ‘56,
Cutkosky ‘89, Iberall ‘97, etc.]

continuous subspace discrete points, Cutkosky 89
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Grasp planning using Eigengrasps™*

e Energy function formulation attempts to bring
pre-specified contact locations on the palm in
contact with the object

e Simulated annealing search is performed over 8
over 8 variables

o 6 for wrist position / orientation
o 2 eigengrasp amplitudes

*M. Ciocarlie and P. Allen, Hand Posture Subspaces for Dexterous Robotic Grasping, I1JRR, 2009 ﬂ
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Grasp Planning Examples
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Interactive Grasp Planning

e Hand posture: 2 variables (eigengrasp amplitudes)

e Hand position:
= user not expected to fully specify final position
o affects interaction, can not handle noise
= 3 variables to re-parameterize hand approach:
o d, 8 and ¢ define a conical search space

e Total: 5 variables
= |oops of 2000 Simulated Annealing iterations
= continuously update base hand position
= search does not get stuck if one loop fails
= best pre-grasps tested for form-closure

o
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Robotic Grasping: A Data Driven Approach
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Is Grasping Indexable?

Many previous attempts to taxonomize grasps

*|s there a finite set of grasps we can pre-compute?

*If so, can we build an indexable database of grasps?

* Given a novel object to grasp, can we find a similar grasp?

e Some Problems:
- Lots of objects to grasp...
- Lots of DOF In a hand (~20 + 6 in human hand)...
- Lots of robotic hands...

e Intractable? But maybe not....

I



Robotics Group
Building the Columbia Grasp Database

e Simulated annealing in a eigengrasp space

« 8 dimensions: 6 pose + 2 eigenvectors

1,814 objects at 4 scales =7,256 objects to grasp

o Grasps evaluated in Grasplt! simulator for 4 hands
e 6 compute-months on multicore workstations

e Contains over 250,000 form-closure grasps

* Includes pre-grasp poses, contact points, and Ferrari-
Canny quality metrics

* A new tool for the grasping community
« Avallable at grasping.cs.columbia.edu
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Learning Grasp Stability via Tactile Sensing™*

e Problem: Can we estimate the stability of a grasp given its tactile
and kinematic sensor information?

= a mapping f:{Tactile, Kinematic} = stability

A machine learning approach to learn from grasp samples
= Need a large range of objects with different sizes and hand poses
= Simulate different grasping situations

Training
data
v
Tactile + Kinematic—» Feature extractor —Bow—p An SVM classifier —0/1 Stable or unstable

A simple procedure of grasp stability estimation

*Hao Dang and Peter Allen, Learning Grasp Stability, ICRA 2012 ﬂ
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Experiments

e Equipment
= A Barrett hand with 96 tactile sensors (simulated and real)
e Grasp set contains 24,000 grasps, training : test = 2/3 : 1/3

e Building a contact dictionary
= Extract contacts from all the grasp samples in a training set
= Cluster the contacts using K-means algorithm

= Cluster centers represent discretized geological centers of contacts
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Experiments

e Simulation experiment
= An SVM is trained based on a training set of 2/3 grasps
= Tested against the remaining 1/3 grasps
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Experiments

e Physical experiment
= Using the same SVM trained in the simulation experiment
= Uniformly sample approach direction and spread angle
= Try out sample poses sequentially and lift object up if classified

stable
Training
data

A 4

Tactile + Kinematic—3» Feature extractor ——Bow—p An SVM classifier

Stable or unstable

Go to next sampled
approach direction/ unstable
spread angle

A simple loop for physical experi
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Experiments

e General grasping performance
= Different objects
= Different surface materials and weights
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Experiments

0.43-0.93 93%

Paper wipe box 0.17 10 9 90%
Pencil cup 0.09 10 9 90%
Candle box 0.11 10 9 90%
Decorative Rock 0.28 10 6 60%
Canteen w/o cover 0.5-0.75 20 15 75%
Canteen w/ cover 0.5-0.75 20 17 85%

Total 0.09 -0.93 110 93 84.6%
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Discussion

e Stability can be learned using tactile and kinematic data
e Knowledge can be transferred from simulation to a physical world

e Reasonably good stable grasp detector in a stable grasp exploration
process

e Limitations
= Accuracy of sensor modeling
o Contact distribution

= Sensor coverage
o A source of error
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Flashlight
e P(fc)
= 35 successes
Drill
e Epsilon Quality
= 16 successes Detergent
Bottle
e 100% improvement
Drink
Carton
False
Rock

*J. Weisz and P. Allen, Pose Error Robust
Grasping from Contact Wrench Space
Metrics, ICRA 2012

Equs = 018
Pfc) = 75%

Lift Test
Success: 0/10

Equs = 013
Pifc) = 62%

Lift Test
Success: 6/10

Equz= 0.33
Pifc) = 79%

Lift Test
Success: 2110

Eqw==0.38
Pifc) = BB%

Lift Test
Success: /10

ngs =0.35
Pifc) = 75%

Lift Test
Success: 0/3

Improved Grasp Quality Metric*

Best Grasp ranked by £,

Best Grasp ranked by P(fc)
Simulated Grasp Physical Grasp Grasp Metrics  Simulated Grasp  Physical Grasp Grasp Mefrics

&

€ws = 0.15
P(fc) = 99%

- Lift Test

Success: 10/10

Egws = 0.12
P(fc) = 95%

Lift Test
Success: 8M0

Eqws = 0.31
P(fc) = 97%

Lift Test
Success: 5M0

Equs = 0.37
P(fc) = 100%

Lift Test

| Success: 10/10

Eqws = 0.319
P(fc) = 98%

Lift Test
Success: 213




HUMAN-ROBOT INTERFACES FOR
ASSISTIVE GRASPING

* Need for assistive robotics
* 400,000 spinal cord injuries, 50% below neck paralysis
* 5 M stroke patients
* Aging worldwide population

« Grasping for Transport is a critical issue in assistive
robotics

» ‘tasks identified “high priority” by users with disabilities are
picking up miscellaneous objects from floor or shelves as
well as carrying objects’ [1]

[1] “Neuromuscular diseases in the mda program,” 2008,
http://www.mdausa.org/disease/40list. html



GRASPING WITH YOUR FACE
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ONLINE BCI SYSTEM FOR GRASPING

Grasp target selection and localization via 3D vision
Online Multi-DOF hand configuration planning
Grasping simulator-in-the-loop

Approach trajectory planning

Input is low dimensional signal via an inexpensive, non-invasive BCI

4 simple facial gestures are sufficient!

System Components

« Emotiv EPOC EEG Headset

« Kinect Vision System

e Grasplt! and Eigengrasp Online Planner
 Staubli Robotic Arm

e Barrett Hand



OVERVIEW OF WORKFLOW

IDENTIFY
AND ALIGN GRASP :1,> :E'\‘I‘;:PW GRASP
OBJECT WITH PLANNER EXECUTION
PROCESS
MODEL
START RUN - — GRASP EXECUTION
PLANNER “::“g; i
GRASP REVIEW
‘ PROCESS
Gesture 2 (YES) |
esture 1 (PLAN AGAIN) U

Gesture 1




1. OBJECT IDENTIFICATION AND
LOCALIZATION

Depth image from Kinect range sensor
Point cloud alone is not sufficient to predict grasp quality

ldentify objects using features generated from pairs of
oriented points and a variant of RANSAC (Papazov 2011)

= RGB projection onto point cloud
= Blue is actual bottle (from RGB)
e Green is determined model

Registered model sent to Grasplt!
simulator




2. GRASP PLANNING

A grasp can be a considered a point in a high-

dimensional hand configuration space:; oy

\ «ﬁ' | i ﬁ,m

5 i Wrench

[+] Esprasso cup

20 DOF 12 DOF 4 DOF 14 DOF ® w ® @ a0 o 0 ® %

e Low-dimensional subspaces can approximate most of the
variance needed for common grasping tasks (Santello et al.)

e PCA on large dataset of human joint angles during grasping
e 2 PC’s contain approx. 85% of the variance!

= Continuous grasp subspace approximates common grasp posture

e.g. P=ae;+ane,



2. GRASP PLANNING

User is presented with a simulation world containing
the hand, the object, and a surface
* Gesture 1: a “click,” used to progress through stages

« Gesture 2: confirm execution (want low false alarm rate)
« Gesture 3: Rotate hand around x-axis, continuous

* Gesture 4: Rotate hand around y-axis, continuous

Gesture |[Run Planner Review Grasps Execution
1 start/stop planner  |cycle through grasps restart
2 n/a select grasp confirm grasp
3 rotate around x-axis n/a n/a
4 rotate around z-axis n/a n/a




2. GRASP PLANNING

REMEN
RUN
PLANNER Sl

GRASP REVIEW
PROCESS
S SHOW GRASP
Gesture 2 (YES)

\ I ] I MOVE INPUT Gesture 2 (EXECUTE)
HAND FOR
Gesture 3 (Rotate Around X-axis
of Object)

Gesture 4 (Rotate Around Z-axis
of Object)

esture 1 (PLAN AGAIN) JJ
&
QO

» User chooses approach direction which guides
planner

* Planner populates list of suggested grasps
« User selects grasp to execute



2. GRASP PLANNING

« Simulation Ul during planning
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2. GRASP PLANNING

GRASP PLANNER SOLUTION SET
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Rank: 3
Energy: -1.790, Iteration: 1824

Rank: 4
Energy: -1.335, Iteration: 956

Rank: 5
Energy: -2.107, Iteration: 956




3. EXECUTION

« Arm planner determines if selected grasp is achievable
« If arm can’t execute grasp, user is notified, can restart planner
* Previously selected grasp now influences planner

SEND GRASP TO
ARM

GRASP EXECUTION

FLASH | Gesture 1
NOTIFICATION |
IN UI




Ohject

Flashlight

RESULTS

Flask

5 ODbjects
2 grasps/object ...

100% success
rate

Shampoo Boitle

Shaving Cream




DISCUSSION

« End-to-End system for BCI grasping

» Uses simple, non-invasive BCI

« Human-in-the-Loop design is a powerful paradigm
« User control is best when at high level

« Still some open issues:
* Learning component for BClI interface
 EEG vs. EMG signals
« Ul design
« Grasping amid clutter
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Recap

e Simulation is a powerful tool, both online and offline

e Data Driven approaches to grasping are quite promising,
for known and novel objects

e New User Interfaces for grasping need to be developed for
Human-in-the-Loop tasks

= Assistive Robotics
= Learning by Demonstration
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