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Grasp planning and optimization have been hot topics
in the last decade. Due to the complexity of generating
good grasps in analytic form for arbitrary objects, most
of the proposed approaches rely on sampling strategies:
candidate grasps are generated according to some criteria
and then ranked with some quality metric. Uniform sampling
around heuristic pre-grasps [1], [2], simulated annealing
[3], randomized trees [4] and active learning [5] are state-
of-the-art techniques to generate grasp candidates. In this
work we propose the use of Bayesian Optimization methods
[6] to tackle the problem. Our work exploits a sequential
sampling strategy, where the results from previous trials
convey information to guide the next samples. We show
experimentally that, depending on object’s shape properties,
sequential decision may reduce significantly the number of
trials necessary to achieve quasi-optimal grasps with respect
to random search.

We use the OpenRave Simulation Environment [7] to
develop our methods. The simulation environment consists
of a manipulator arm, the Barrett hand, and a few objects
of different complexities (Fig. 1). A grasp is parameterized
by the x and y positions with respect to an object-centered
reference frame. A trial consists in placing the open robot
hand at the chosen configuration (x,y), then close the fingers
until they contact with the object surface, and finally compute
the grasp quality metric. The objective is to optimize the
grasp parametersx and y such as to obtain the highest
quality value. We use a wrench space based metric as in
[3] able to evaluate both force-closure and non-force-closure
grasps. Each trial feeds a Gaussian Process Regression model
[8] that estimates the expected value and variance of the
quality metric. These measures can be evaluated easily at
any point on the state space. To decide the next point to
try, we maximize at each time step a form of Expected
Improvement function (EI) with exploitation-vs-exploitation
control [9]. This function is derived from the Gaussian
process in a straightforward manner. To search for its global
maximum we use the DIRECT algorithm [10]. This is a
global optimization method that works by partitioning the
space in intervals (DIRECT stands for DIvide RECTangles),
evaluating the EI in their center, and choosing, at each time
step, the interval where the EI can be maximal for any bound
on the function derivative (Lipschitz constant). We performed
experiments in simulation to evaluate our approach with the
objects shown in Fig. 1. The initial trial is chosen randomly
around the object. Then the algorithm runs autonomously and
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Fig. 1. The hand and objects used in the evaluation.

we compute the number of trials needed to achieve a grasp
quality metric at 5%, 10% and 20% away from the global
optimum. The results are summarized in the following Table.
One can observe that smooth objects are learned in less than

Sphere Glass Cylinder Mug Cuboid Star Prism
20% 14 19 20 1 59 31
10% 14 19 20 55 59 105
5% 14 31 39 55 59 105

20 trials. Then the mug, a bit more complex object, requires
about 50 trials. Objects with edges require a bigger number
of trials, but still at a tractable level. Even the star-likeshaped
object, with multiple discontinuities, can obtain good grasps
with a few tens of trials. We also compared our approach
with random sampling and the conclusions are similar. Our
method is better for smooth objects, whereas the performance
of the two methods become similar as the objects present
more edges (plots not presented here for lack of space).
We expect that, with a higher number of dimensions, the
advantages of the Bayesian Optimization method become
more evident. This will be the subject of future work.
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