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Grasp planning and optimization have been hot topic: |
in the last decade. Due to the complexity of generating |
good grasps in analytic form for arbitrary objects, most
of the proposed approaches rely on sampling strategie
candidate grasps are generated according to some criteria
and then ranked with some quality metric. Uniform sampling Fig. 1. The hand and objects used in the evaluation.
around heuristic pre-grasps [1], [2], simulated annealing

[3], randomized trees [4] and active learning [5] are state- . .
of-the-art techniques to generate grasp candidates. & thf€ compute the number of trials needed to achieve a grasp

work we propose the use of Bayesian Optimization methocf’s“ality metric at 5%, 10% and 20% away from the global

[6] to tackle the problem. Our work exploits a sequentiaPptimum' The results are summa_rized in the foIIowi_ng Table.
sampling strategy, where the results from previous trialgne can observe that smooth objects are learned in less than

convey information to gwd_e the next samples. We sh(_)‘v' Sphere| Glass | Cylinder | Mug | Cuboid | Star Prism
experimentally that, depending on object’'s shape progerti [20% 14 19 20 1 59 31
sequential decision may reduce significantly the number ¢f10% | 14 19 20 55 59 105

i : L : 5% 14 31 39 55 59 105
rials necessary to achieve quasi-optimal grasps withesp

to random search. . . . ]

We use the OpenRave Simulation Environment [7] 40 trials. Then the mug, a'blt more complex ob!ect, requires
develop our methods. The simulation environment consis@20ut 50 trials. Objects with edges require a bigger number
of a manipulator arm, the Barrett hand, and a few objec&f trials, but still at a tractable level. Even the star-lfteaped
of different complexities (Fig. 1). A grasp is parametedize OPJ€Ct, with multiple discontinuities, can obtain good gpa
by the x andy positions with respect to an object-centeredVith @ few tens of trials. We also compared our approach
reference frame. A trial consists in placing the open robdtith random sampling and the conclusions are similar. Our
hand at the chosen configurationyj, then close the fingers method is better for smooth objgct§, whereas thg perforenanc
until they contact with the object surface, and finally coepu ©f the two methods become similar as the objects present
the grasp quality metric. The objective is to optimize thdnore edges (plots not presented here for lack of space).
grasp parameters and y such as to obtain the highestwe expect that, with a h|_gher nqmper_of dimensions, the
quality value. We use a wrench space based metric as dvantages of the Bayesian Optimization method become
[3] able to evaluate both force-closure and non-forcetgies MOre evident. This will be the subject of future work.
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