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I. INTRODUCTION

In order to perform complex manipulation tasks, a robot
must know which actions it can perform with the available
objects. In unstructured environments, potential manipulations
afforded by objects will not be pre-specified, and must instead
be learned. Rather than determining each novel object’s affor-
dances from scratch, the robot can learn more efficiently by
generalizing manipulations from similar known objects.

Actions can be generalized to new objects by learning
direct mappings from the object’s visual features to actions
[1]. This approach differentiates itself from indirect methods
by not requiring intermediate representations, such as object
classes [2]. A robot can autonomously learn the afforded
actions of an object by applying the action to the object and
observing the resulting effects [3], [4]. If the desired effect
is achieved, then the object can be labeled as affording this
action. Thus, this affordance learning task can be treated as a
binary classification problem for a given action.

Our approach is based on two key insights: 1) The per-
ception of objects and the interactions between objects are
based largely on the objects’ surface geometries [1], and 2)
the affordances of objects are often related to only subparts of
objects and not the whole object [5]. Therefore, we propose
generalizing actions to new objects by finding subparts of
objects that have similar shapes and are, therefore, more likely
to have the same affordances.

The subparts of objects are represented in a nonparametric
manner, which is based directly on the observed point clouds
of the subparts. Thus, the robot does not rely on task-specific
visual features, and can discriminate between any subparts
that are not visually identical. Using this nonparametric rep-
resentation, we also define a kernel function for computing
the similarity between different subparts. Hence, we can use
kernel learning methods [6], such as kernel logistic regression,
in order to learn which subparts afford a given action.

The proposed method was successfully tested on a real
robot, as shown in Fig. 1. Starting with a single human
demonstration of the task, the robot was able to learn to
generalize this action to novel objects of different shapes and
sizes.

II. KERNEL-BASED DIRECT ACTION PERCEPTION

As the robot should manipulate a wide range of objects,
we require a flexible subpart representation. The subparts of
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Figure 1. The left image shows the robot being taught a pouring action using
kinesthetic teach-in. The robot subsequently learns to generalize the pouring
action from the watering can to the cup, as shown in the right image.

objects are described using three components: the object’s
point cloud, a weighting function, and the subpart frame.
These components are illustrated in Fig. 2 for the handle of
a watering can. The subpart frame is similar to a tool center
point, and defines the local coordinate system of the subpart.
In Fig. 2, the subpart frame is indicated by the black arrows.
The point cloud and and the weighting function are both
specified in this coordinate system. The weighting function
defines which regions of the point cloud are relevant to this
subpart. In Fig. 2, the weighting of the points is shown by their
color. Points close to the middle of the handle are therefore
more important for defining the shape of the handle than
points on the spout. In the experiments, we used a Gaussian
weighting function centered on the subpart frame.

Using these three components, we can define a surface
function for representing the shape of the observed subpart.
The function is defined as a mixture of Gaussians centered
on the points in the point cloud, and weighted according to
the weighting function. The resulting surface function returns a
high value when evaluated at a location close to the surface of
the subpart, and a value closer to zero when evaluated further
away from the surface.

In order to generalize actions to different objects, we must
be able to compute the similarity between their shapes. We
therefore also define a kernel function for computing the
similarity between subparts. The kernel function is defined as
the normalized inner product between the surface functions.
The kernel function returns a value close to one if both
subparts have surfaces in the same locations relative to the
subpart frame.

In order to link the actions to the subparts, we use the
subpart frame to define the tool center point for the action.
Thus, the action defines the trajectory of the subpart within the
task space. Manipulation actions often generalize well to new
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Figure 2. The handle subpart of a watering can. The dots indicate the points
of the point cloud. The color indicates the weighting function, which defines
how relevant the individual points are to the subpart. The black arrows indicate
the coordinate system of the subpart.

situations when defined in this manner [7], [8]. We represent
the actions using dynamical systems motor primitives [9], [10],
which can be easily adapted according to the context of the
task. In particular, the start and goal states of the movement
can be adapted to the selected subpart frame.

Not every subpart will, however, result in a successful ma-
nipulation. The robot must therefore also learn which subparts
afford the action. Given the vision-based kernel function, we
can use kernel logistic regression to classify subparts according
to whether they afford the action. Kernel logistic regression
first computes the probability that the subpart affords the ac-
tion, which is then thresholded to obtain the label. Computing
this probability is useful for decision making, as it allows the
robot to select the subpart that it believes is the most likely to
afford the action.

III. EXPERIMENT

Our proposed method was tested on both a grasping and a
pouring experiment. For safety reasons, the robot had to learn
to pour a ball, rather than a liquid, into a container. In each
experiment, the robot was given a single demonstration of the
task using the large watering can shown in Fig. 1. The robot
was then given novel objects, of different shapes and sizes,
and had to learn to generalize the action to novel objects. The
algorithm was evaluated on how many attempts it required to
successfully perform the task with the novel objects.

In the pouring experiment, the robot kept attempting the
task until it had successfully poured the ball into the container
three times. In each attempt, the robot applied the action
to the subpart that was most likely to afford the action, as
computed by kernel logistic regression. After each attempt,
the robot added the newly acquired information to the training
set and retrained the kernel logistic regression for the next
attempt. The experiment was repeated fives times on three
different objects. The robot’s learning was reset between each
experiment and each object.

The results of the pouring experiment are shown in Fig. 3.
The horizontal red line indicates the three successful trials

5 10 15
0

2

4

6

8

10

N
r. 

of
 P

ou
rin

g 
At

te
m

pt
s

Trials Trials Trials

Figure 3. The height of each bar indicates the number of attempts the robot
required to achieve three successful pours. Hence, the trials underneath the
red line indicate successful pours, and attempts above the line indicate failed
attempts. The experiment was repeated five times for each object.

required to complete the task. Hence, any bar that does not
cross this line indicates that the robot immediately generalized
the action to the novel object. Overall, the robot only failed
to perform the task 17 times, compared to the 45 successful
attempts. By learning from its mistakes, the robot was able
to successfully generalize the actions to the novel objects in
every experiment.
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