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Abstract— Grasping an object is usually only an intermediate
goal for a robotic manipulator. To finish the task, the robot
needs to know where the object is in its hand and what action
to execute. This paper presents a general statistical framework
to address these problems. Given a novel object, the robot learns
a statistical model of grasp state conditioned on sensor values.
The robot also builds a statistical model of the requirements
of the task in terms of grasp state accuracy. Both of these
models are constructed by offline experiments. The online
process then grasps objects and chooses actions to maximize
likelihood of success. This paper describes the framework in
detail, and demonstrates its effectiveness experimentally in
placing, dropping, and insertion tasks. To construct statistical
models, the robot performed over 8000 grasp trials, and over
1000 trials each of placing, dropping and insertion.

I. INTRODUCTION

Knowledge of the grasp state is often critical to any sub-
sequent manipulation task. Intuitively, harder tasks demand a
more accurate estimation of the state of a grasp than simpler
ones. For example, balancing a cylinder on a table requires
more accuracy than dropping it into a hole. More generally,
consider a manipulator, an object to manipulate, a task, and a
set of actions designed to accomplish the task. In this paper
we build a data-driven framework to automate the process
of deciding whether the task is solvable with the available
hardware and set of actions, and find the action most likely
to succeed.

The statistical framework proposed in this paper is best
suited to model the execution of tasks that require grasping
an object prior to execution, i.e., post-grasp manipulation
tasks. We address the problem by separating it into two
independent steps. First, estimate the state of the grasp with
in-hand sensors, and second, model the accuracy require-
ments that the particular task imposes on our state estimation.
This separation yields the benefit that we can use the same
model of state estimation for different tasks, and the same
model of task requirements for different manipulators. Using
this framework, each sensor reading generates a probability
distribution in task action space, enabling us to find not only
the optimal action, but to understand just how likely that
action is to succeed.

Figure 1 illustrates the process for placing an object.
Sensors in the hand provide information of the grasp state.
First, we estimate the probability distribution of the pose of
the object in the hand. Second, we predict the probability of
success of each available action. Both of these are computed
based on data-driven models. Finally, we choose the action
most likely to succeed.

We test the framework with three different manipulation
tasks: placing an object, dropping it into a hole, and inserting
it. In this extended abstract, we show the results for the first
task. The experimental setup in Figure 1 consists of a simple
gripper [1], [2] mounted on a robotic arm that iteratively
grasps an object from a bin, estimates the distribution of the
pose of the object, computes the probability of success for
all available actions, chooses the optimal one, and executes
it.

II. STATISTICAL FRAMEWORK

Our goal in this paper is to find the action a from a
set of available actions A that, given sensor inputs z ∈ Z,
maximizes the expected performance of succeeding at a task.

Two possible options are to model the performance of an
action directly as a function of sensor observations, or to
project the sensor inputs z to a more compact representation
of state, x. However, in this work, we choose to encapsulate
uncertainty by representing the system by its state belief
P (x|z) rather than just by its most likely value x. By
maintaining the distribution of all possible poses of the
object, we can later make a more informed prediction on
the probability of success of a given action.

The dimension of the space of belief distributions Bel(X)
is too large to model the probability of success of an action
P (a|z) directly from the belief P (x|z). We simplify this
problem by marginalizing the probability of success of an
action P (a|z) with respect to the true state of the system x:

P (a|z) =
∫
X

P (a|z, x) ·P (x|z)dx =

∫
X

P (a|x) ·P (x|z)dx
(1)

where in the last step, we make the assumption that the state
representation x is informative enough such that the output
of an action is conditionally independent of z, given the true
state x.

A. Learning Sensing Capabilities
In this section, we model the posterior distribution P (x|z).

Learning P (x|z) directly is usually expensive in terms of
data required, since the complexity of the model depends on
the dimension of z. To simplify the process we use Bayes
rule to flip the conditioning and assume a Gaussian likelihood
P (z|x) ∼ N (z;µ(x), σ(x)2). The likelihood of the system
is the distribution of sensor readings given the true state of
the system, which is usually unimodal.

P (x|z) = P (z|x)P (x)
P (z)

' N (z;µ(x), σ(x)2) · P (x)
P (z)

(2)



Fig. 1. Procedure to choose the optimal action to accomplish a manipulation task. First, we learn the belief of the state of the system from sensor readings.
Based on that belief, we then estimate the probability of success of available actions and choose on the best action to take. Both the state estimation and
task requirements are learned using real data.

where P (x)
P (z) is the normalized state prior, and both µ and σ

are functions of the true state of the system x. We normalize
P (x|z) a posteriori, rather than explicitly computing P (z).
In our implementation, we use Kernel Density Estimation to
model the prior distribution P (x), and Gaussian processes
[3] to regress the functions µ(x) and σ(x).

Figure 2 shows data from 2000 grasps in the r − θ
plane, the estimated prior distribution P (x), and the posterior
distribution P (x|z) corresponding to one example grasp.
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Fig. 2. [Left] State from 2000 graps collected to model the sensing
capabilities of the manipulator. [Center] Prior state distribution P (x).
[Right] P (x|z) for an example grasp, which shows us the most likely pose
of the object, and where else it could be.

B. Learning Task Requirements

We now model the probability of success of an action,
P (a|x). This will tell us how accurate our estimation of grasp
state must be for an action to succeed at a task. While not
required for our framework, we choose to state parameterize
the set of actions. For example, for the task of placing a
cylindrical object, if assumed to be at pose p, we design an
action ap that turns the cylinder so it is upright with respect
to the ground, and then set it down. Note that ap is an action
parameterized by a chosen state p.

In general, the success of an action depends both on the
action ap itself and the true state of the system x. Since
we assume state parametrized actions, we assume that the
probability of success only depends on the difference (x−p).
When placing a cylinder whose estimated axis is 1 degree
off from its true state, we are more likely to succeed than if
we try to place an object several degrees off. We model the

outcome of an action ap as a Bernoulli random variable of
parameter φap

, so that: P (ap = 1|x) = φap
(x) = φ(x− p)

The use of state parameterized actions allows us to ran-
domly sample the space of mismatches (x− p) by choosing
to execute the action ap with p = x + ε, where ε is a
uniformly distributed error in the space of system states
instead of the optimal one ax. In our implementation, we
use a Gaussian process to regress the Bernoulli parameter φ
with the outcome of 1000 placements. Figure 3 shows the
requirements φ(x− p) for placing a highlighter marker with
a simple hand. As |x − p| increases, our likelihood of task
success decreases, which is as expected.
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Fig. 3. [Left] Data from 1000 purturbed placing experiments. Darker points
are successes. [Center] P (ap = 1|x), requirements for the task of placing
a marker subject to state perturbation. [Right] P (ap|z) ∀ p, distribution of
predicted placing accuracy for an example grasp.

C. Matching Task Requirements with Sensing Capabilities
Here we combine the models of P (x|z) and P (a|x) to

estimate the probability of success of an action ap. For that,
we extend (1) as:

P (ap = 1|z) =
∫
X

P (ap = 1|x)P (x|z)dx

=

∫
X

φ(x− p)N (z;µ(x), σ(x)2)
P (x)

P (z)
dx

'
∫
E
φ(ε)N (z;µ(p+ ε), σ(p+ ε)2)

P (p+ ε)

P (z)
dε

(3)

where we apply the change of variables ε = x − p.
Depending on the value of maxap P (a|x) we can decide



either to execute the task with the optimal action, or to abort
the execution. Figure 3 shows the predicted task success
distribution for an example grasp.

III. EXPERIMENTAL VALIDATION AND DISCUSSION

We performed an additional 500 placing trials with placing
parameters as outlined in Section II. Figure 4 compares
experimental results to model predictions. We bin grasps by
their predicted placing probability and compute the experi-
mental success rate of those grasps. If we look at all of the
grasps that were predicted to succeed around 40% of the
time, the average experimental success rate for those grasps
should also be around 40%. The experimental probability
tends to follow the predicted probability, indicating the
validity of this framework. We can significantly improve our
system performance by making an informed decision based
on the predicted probabilitiy of success of a given action.
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Fig. 4. [Left] shows the robot succeeding at placing a marker. [Center]
shows that the experimental success rates of grasps binned by their predicted
probability support that predicted probability value. [Right] shows how we
can increase our success rate by rejecting low placing probabilities.

In this paper, we have laid out a general statistical frame-
work to model the sensing capabilities of a hand and task
success requirements. In addition, we show how to combine
them together in a principled way to yield a mapping between
sensors and the best action for a task, as well as the expected
success rate. All of this was done in a data-driven way,
requiring over 8000 real grasps.
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