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Abstract

Passive dynamic walking refers to a class of bipedal machines that
are able to walk down a gentle slope with no external control or en-
ergy input. The legs swing naturally as pendula, and conservation
of angular momentum governs the contact of the swing foot with the
ground. Previous machines have been limited to planar motions.
We extend the planar motions to allow for tilting side to side (roll
motion). Passive walking cycles exist, but the roll motion is unsta-
ble, resembling that of an inverted pendulum. The instability is due
to mismatching of roll velocity with the ground contact conditions.
Several strategies are presented for stabilizing this motion, of which
the quasi-static control of step width is determined to be both simple
and efficient.

1. Passive Dynamic Walking

It is possible to construct a two-legged mechanism that can
walk down a gentle slope with no energy source other than
gravity and no active feedback control (McGeer 1990). The
legs swing as coupled pendula so as to produce a stepping
motion resembling that of humans (Mochon and McMa-
hon 1980), and completion of a step automatically produces
the appropriate conditions for the initiation of another step
(McGeer 1990). This periodic motion is locally stable in that
it passively dampens out small perturbations from its nominal
walking trajectory. Its similarity to human walking suggests,
first, that humans may harness passive dynamics to some de-
gree to aid or simplify control of locomotion and, second,
that the grace normally associated with human motion may
be attainable by a machine. The study of passive walking may
yield insight to automatic control of locomoting machines, as
well as physiological motor control of locomoting animals.

One particularly attractive feature of the passive walker is
that it does not specify a nominal trajectory about which the
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system is tightly controlled. When the mechanism deviates
from the nominal trajectory, the perturbation is eliminated
gradually over many steps through the support transfer that
occurs at the end of each step. This type of motion looks
graceful and appears to be efficient. Only a few locomoting
robots (e.g., Miura and Shimoyama 1984; Raibert 1986) adopt
control strategies without need for a reference trajectory.

One significant difference between humans and existing
passive walking machines is that the machines are restricted
to planar motions—typically achieved by constraining pairs
of legs to act like crutches. In contrast, humans rock from side
to side as they step and can modulate the lateral placement
of footsteps (Redfern and Schumann 1994; Townsend 1985).
Humans are also able to rotate about the vertical (yaw) axis
at the ankles. These abilities are necessary to negotiate turns
and to afford sufficient freedom in foot placement to negotiate
many obstacles. McGeer (1991) modeled three-dimensional
(3-D) passive dynamic walking incorporating both roll and
yaw rotation and found it to be unstable but did not offer a
stabilizing control law.

As a first step toward stabilized 3-D passive dynamic walk-
ing, we consider here the theoretical stability of a walking
machine that rocks side to side but incorporates no yaw mo-
tion. We first describe the dynamical equations of motion
and then consider the search for periodic orbits that compose
a stepping cycle. We will show that the system is passively
unstable but easily stabilized by a simple control scheme that
preserves much of the passive behavior. We will also consider
a variety of parameter variations and their impact on stability
and efficiency.

2. Dynamics

The passive walking machine consists of two legs and a pelvis
(see Figure 1) and walks forward by placing one foot on the
ground and riding on thestance leg, which rolls forward as an
inverted pendulum mounted on the stance foot. At the same
time, theswing legmoves in a pendular arc, bringing one foot
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Fig. 1. Configuration of 3-D passive walker. The mechanism
rolls on curved feet and can rock side to side. The stance and
swing legs are connected at the pelvis and swing freely about
the axis of the pelvis. The legs can also be splayed laterally
by equal amountsβ.

forward so that it makes contact with the ground when the
mechanism is in a configuration identical to that at the be-
ginning of a step. Thedouble support phase, when both feet
touch the ground, is assumed to be instantaneous, resulting
in a transfer of support from one foot to the other. Given the
appropriate initial conditions, the swing and double support
phases culminate in the start of another cycle with initial con-
ditions mirroring those of the previous step: the roles of the
stance and support legs are switched. We also define aneutral
position, in which the legs are oriented perpendicular to the
ground and parallel to each other, with both feet touching the
ground. Fixed to the ground are three mutually perpendicular
unit vectorsn1, n2, andn3, facing forward, up, and to the
right, respectively, from the point of view of the machine.

We will utilize dimensionless variables to describe the
mechanism, with length quantities normalized by the ma-
chine’s overall leg lengthl and mass quantities normalized
by the machine’s total massM. Time will be normalized by
the reciprocal of the characteristic frequency,

√
l/g.

Three degrees of freedom are defined for the walking ma-
chine. Two are analogous to those of a planar, two-legged
walker without knees (McGeer 1991), allowing for rotation
of the stance and swing legs about an axis perpendicular to the
sagittal plane (an anatomical convention dividing the left and
right halves of the body), measured with anglesqstanceand
qswing. The remaining degree of freedom allows the machine
to rock side to side in the frontal plane (dividing the front and
back of halves of the body), measured with angleqroll .

A more precise geometrical description of the machine’s
geometry and degrees of freedom is as follows (see Figure 1).
At the base of the legs are feet that are portions of cylinders
(extruded from circular arcs) with normalized arc radiusR

and cylinder axis always oriented parallel ton3. The stance
foot rolls on the ground without slipping; the arc length is
assumed to be sufficient for it to roll for an entire step. The
line segment of ground contact is bisected by pointG. The
angleqstancedescribes the rotation of the stance foot about
n3 and with respect to the neutral position. A dextral, mu-
tually perpendicular set of unit vectorsf1, f2, andf3 define
the stance foot’s reference frame and coincide withn1, n2,
andn3 in the neutral position. The stance leg, modeled as a
straight line segment, attaches to a hinge joint at the midpoint
of the stance foot and rotates about axisf1 by an amountqroll
measured with respect to the neutral position. Unit vectors
s1, s2, ands3 define the stance leg’s reference frame. The
pelvis is fixed to the upper end of the stance leg, pointP , and
is modeled as a line segment of lengthlP in the direction−s2.
The swing leg is attached to a hinge joint at the other end of
the pelvis, pointS, and is identical to the swing leg except that
it rotates about axiss3 by an amountqswing. Whenqroll = 0,
qswing + qstanceis the absolute angle of the swing leg from
the vertical. Unit vectorsi1, i2, andi3 define the swing leg’s
reference frame. Finally, the swing foot is attached to a hinge
joint at the bottom of the swing leg, pointI . It is assumed
that the configuration angles are small, so that the stance foot
is always oriented with its cylindrical axis parallel ton3 upon
ground contact.

This same model is able to accommodate a lateral distance
between the feet,lw, that differs from the pelvis widthlP , by
splaying the legs laterally by equal anglesβ. However, we
still constrain the splayed legs to rotate about the axiss3, so
that the dynamics are equivalent to that of an unsplayed model
with suitably adjusted inertial parameters (see Figure 1). We
have chosen nominal values ofR = 0.3, lP = 0.3, lw = 0.15,
which result in a roughly anthropomorphic gait.

The following inertial parameters are defined. Each leg
has normalized massml and radius of gyrationrl about the
center of mass located a distanceC from the attachment to
the foot on the axis of the leg. It is assumed that each foot is
lumped with the leg mass and has negligible contribution to
leg dynamics. The pelvis has massmP and principal moment
of inertiampr2

p transverse to its axis. We have chosen nominal
values ofmp = 0.68, rP = 0.0866, rl = 0.32.

Energy for propelling the machine is provided by placing
it on a ramp sloping downward. This is modeled by directing
gravity at an angleγ measured counterclockwise with respect
to the vertical so that the gravitational acceleration vector is
g ≡ −n2cosγ + n1sinγ .

The stance foot makes line contact with the ground, and
this contact is assumed to provide sufficient friction to ensure
that the foot rolls without slipping. Using a small angle as-
sumption forqroll , qstance, andqswing, the motion in the yaw
plane is zero to first order. The mechanism is therefore inca-
pable of turning left or right.

The equations of motion for the passive walking mecha-
nism may be written in the standard robotics form:
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M(q)q̈ = g(q) + v(q, q̇), (1)

whereq ≡ [
qroll qstance qswing

]T , M is the mass matrix,
g is a vector containing gravitational terms, andv is a vec-
tor containing Coriolis and centripetal terms. These equa-
tions were derived using a custom software package for rigid
body dynamics (Kuo 1997). These equations are nonlinear
and were solved numerically; a Runge-Kutta algorithm was
used to calculate the solution to the corresponding initial-
value problem,

ẋ = f (x0), (2)

where the state vectorx ≡ [qT q̇T ]T andx0 is an initial con-
dition in which the machine is in the double-support position.

A full swing comprises the motion of the machine starting
from the initial double-support position, including approxi-
mately one half-period swing of the swing leg, and ending
when the swing foot contacts the ground. This condition oc-
curs when the height above ground of the bottom of the swing
foot reaches zero:

g(x) = 0. (3)

The state of the system following one swing is denoted by the
“−” superscript, for example,x−.

A full stride comprises one full swing followed by a support
transfer as the forward leg becomes the new stance leg and
the former stance leg becomes the new swing leg. Using the
“+” superscript to denote the state after impact, this change
in configuration variables is described by

q+
stance= q−

stance+ q−
swing, q

+
swing = −q−

swing, q
+
roll = −q−

roll .

(4)

Following McGeer (1990), we assume that the double support
phase is instantaneous and that the impact of the forward leg
dominates the dynamics. Three equations for conservation of
angular momentum are needed to describe the state follow-
ing ground contact. Denoting the angular momentum of the
entire machine about contact pointG as the vectorHG, one
component of this quantity is conserved:

H+
G · n3 = H−

G · n3. (5)

Denoting the angular momentum of the entire machine (less
the forward foot) about the bottom of the stance leg as the
vectorHL, one component is conserved:

H+
L · f +

1 = H−
L · i−1 (6)

wheref +
1 = i−1 from (4). Finally, the angular momentum of

the trailing leg is conserved about the hip joint at pointS,

H+
S · s+

3 = H−
S · s−

3 (7)

wheres+
3 = s−

3 . Equations (5) through (7) are all linear inq̇
and can be combined with the switching of stance and swing
legs and reversal of sign of the roll angle into a single matrix
equation

q̇+ = L(q−)q̇−. (8)

The same equations (2) through (8) can then be used for
the following stride. The state at the beginning of the next
stride can be written as a function of the initial condition
of the previous one. For an initial conditionxk, we define
the functionF(xk) combining integration of (2) until (3) is
satisfied with (4) and (8), so that

xk+1 = F(xk). (9)

This may be interpreted as a Poincaré map, with the constraint
(3) serving as the Poincaré section.

3. Steady Passive Dynamic Walking

The mechanism is capable of a periodic walking cycle if there
is an initial conditionx∗ that acts as a fixed point, such that

x∗ = F(x∗). (10)

We used a first-order Newton search to find fixed points, start-
ing with a pelvis width oflP = 0 and using as initial guesses
the fixed points of the planar passive dynamic walking ma-
chine. We then computed additional fixed points while chang-
ing lP incrementally. Because step length was found to be re-
lated to slope, we devised two methods for determining fixed
points. One method is to choose a step length and then deter-
mine the appropriate slope. We used the parameterα to set
the step length by setting initial conditionqstance(0) = α. The
other is to choose the slope and then determine the appropriate
fixed point(s).

As with the planar case, we found two solutions for each
α or γ , which were termed long- or short-period gait cycles.
In the long-period cycle, the swing leg swings forward and
reverses angular velocity (qswing < 0) before ground contact.
In the short-period cycle, the swing leg contacts the ground
while still swinging forward with positive angular velocity
(qstance> 0). Using a nominal value ofα = 0.3, we found a
short-period cycle at slope of about 2.33%, and a long-period
cycle at a slope of about 1.83%. Because slope is equivalent
to the specific resistance (mechanical work done divided by
weight and distance traveled), it can be used to infer that
the short-period gait is less efficient than the long-period gait
for that step length. Keeping the other parameters constant
but reducing slope and step length, we found short-period
solutions at slopes as low as 0.30% and long-period solutions
at 0.20%.
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4. Stability Analysis

Local stability properties of (9) can be obtained by performing
a Floquet analysis in the manner of McGeer (1990). This
involves linearizing (9) about the fixed point,

xk+1 ≈ F(x∗) + ∂F (x)

∂x

∣∣∣∣
x∗

(xk − x∗)

1xk+1 ≈ A · 1xk,

(11)

where1 denotes the deviation from the fixed point, and then
examining the eigenvalues (Floquet multipliers) ofA. Any
eigenvalues with magnitude greater than 1 imply instability.
There are five eigenvalues, because the constraint (3) removes
1 degree of freedom in perturbations.

We found that the 3-D passive dynamic walking machine
retains the stable characteristics of the planar machine, but
the addition of roll motion adds an instability. As a conse-
quence, there is one unstable mode in the long-period gait,
and two unstable modes in the short-period gait. As shown in
Table 1, the long-period gait has a pair of reciprocal modes,
which we name the “roll mode” and “anti-roll mode,” that
are dominated by the roll angle and velocity and resemble the
modes of an inverted pendulum. (The eigenvalue is negative
because the sign of the roll angle is reversed in (4).) From
step to step, the mechanism will tend to fall to one side or the
other (see Figure 2). The other modes are stable and largely
independent of the roll motion as in the planar case. We name
the complex pair of modes the “stance modes” because they
are dominated by the stance angle and may be interpreted as a
natural tendency for the mechanism to resist perturbations to
step length. The “swing mode” is very close to zero and gives
the mechanism a very fast ability to eliminate perturbations
to the swing leg.

The short-period gait also has a pair of inverted pendulum
modes, but with an unstable eigenvalue of−8.7. It inher-
its the planar mechanism’s tendency to amplify rather than
eliminate perturbations to step length, with an eigenvalue of
2.9. Because of this instability and the fact that the short-
period gait is less efficient, we will favor the long-period gait
in subsequent analyses.

The inverted pendulum instability in the frontal plane is
somewhat curious. It is at first unsurprising because the stance
leg is after all an inverted pendulum mounted transversely on
a rolling cylinder. However, the stance leg is also an inverted
pendulum in the sagittal plane, and it is the ground contact
conditions that stabilize that motion. Ground contact works
such that the faster the inverted pendulum falls in the sagittal
plane, the more energy is dissipated because the mechanism
takes a longer step. It might therefore be surprising that a
similar condition does not stabilize the frontal plane.

We can gain some insight to the instability by examining
the roll motion in its own phase plane, as if it were com-
pletely decoupled from the sagittal plane dynamics. When

Fig. 2. Four steps of unstable passive walking cycle. With
nominal initial condition for roll velocity perturbed by 0.1%,
machine falls laterally within four steps. Leg angles are mea-
sured counterclockwise from neutral position, viewing the
machine from the right.

the roll motion is perturbed by a slight increase in initial roll
velocity (see Figure 3a), the system follows a constant energy
trajectory that differs from nominal. Total energy is constant
during the swing phase because the system falls passively with
no dissipation until ground contact. The perturbed trajectory
cannot by itself amplify a perturbation. Rather, the instabil-
ity comes about because the perturbed trajectory travels too
short a distance in the time of one swing phase. Timing is pri-
marily set by sagittal plane dynamics, and stance and swing
leg kinematics dominate over roll angle in the ground con-
tact conditions (3), so that the decreased magnitude ofq̇roll
in the perturbed trajectory cannot make up for the downward
foot velocity contributed bẏqswing. At ground contact, the
roll motion has built up insufficient speed for the second step,
which starts off on a constant energy trajectory that differs
even more from nominal, and in the opposite direction. The
result is that the roll motion builds up too much speed in the
time of one step, amplifying the conditions at the first step.

5. Stabilization

The presence of a single unstable mode in the long-period
gait poses a relatively minor control challenge for stabiliza-
tion. However, we wish for our control design to reflect the
philosophy of passive dynamics, in that whatever actuation is
needed for stabilization should have minimal impact on the
passively stable modes. In addition, the actuation should be
done in an efficient manner, requiring minimal control au-
thority. We will first examine several possible stabilization
strategies in light of these requirements.
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Table 1. Modes of 3-D Passive Dynamic Walking Machine

eigenvalue: −14.528 0.242− 0.328i 0.242+ 0.328i −0.068 0.057

eigenvector: Roll Stance 1 Stance 2 Anti-roll Swing

1qroll 0.640 0.050+ 0.027i 0.050− 0.027i −0.543 −0.008
1qstance 0.303 0.614+ 0.155i 0.614− 0.155i −0.377 −0.490
1qswing 0.154 −0.597− 0.141i −0.597+ 0.141i −0.006 0.500
1q̇roll 0.567 −0.022− 0.040i −0.022+ 0.040i 0.523 −0.010
1q̇stance 0.206 −0.362− 0.208i −0.362+ 0.208i 0.227 0.296
1q̇swing 0.334 0.097− 0.182i 0.097+ 0.182i 0.488 −0.650

Fig. 3. Phase plane for roll motion. Starting with a perturbed
initial condition, unstable trajectory (gray) deviates slightly
from nominal (black), and reaches ground contact with insuf-
ficient velocity to complete following step. Crosses indicate
constant intervals of time, demonstrating that perturbed tra-
jectory lags nominal trajectory.

Inspired by human walking, we consider five potential
methods for stabilizing the 3-D walking model. The first three
directly affect the trajectory of the body in the frontal plane.
The second two indirectly affect roll motion, one through
lateral placement of the foot and the other by adding a tor-
sional spring to the pelvis. In assessing the efficiency of each
method, we will consider only the magnitude of work-related
energy costs, because other standard criteria for control cost
are not applicable to all methods.

5.1. Direct Control

Direct stabilization methods seek to affect roll motion by ap-
plying torque in the frontal plane (see Figure 4). The first and
perhaps most obvious method is to add torque actuation to
the hinge joint at the base of the swing leg. An appropriate
torque may be applied to correct for a perturbation. A second
method is to leave that joint free and to apply torque actuation

to a reaction wheel mounted on the pelvis. This method is
analogous to a tightrope walker’s use of arms or a balance
bar. By spinning the reaction wheel at the appropriate ve-
locity, it is possible to control the angular momentum of the
rest of the mechanism in the frontal plane, because overall
angular momentum must be conserved. The third method is
to install a hinge or slider joint on the pelvis and actuate the
lateral motion of a mass. This method is analogous to moving
the upper torso to the left or right.

Because the indirect stabilization methods will prove to
be superior, we will only briefly examine the use of angular
momentum to control roll motion. Because the coupling from
roll motion to swing and stance dynamics is weak, we will
assume that the reaction wheel can effect a change inq̇roll with
minimal effect on stance and swing velocities. Applying a
correction1q̇roll = uroll immediately after the beginning of a
step, the subsequent effect is equivalent to applying an initial
condition

xk = x∗ + [
0 0 0 1 0 0

]T
uroll . (12)

We define the control authority vector

Broll ≡ ∂F (x)

∂x4

∣∣∣∣
x∗

so that

xk+1 ≈ F(x∗) + ∂F (x)

∂x4

∣∣∣∣
x∗

uroll (13)

and

1xk+1 ≈ A · 1xk + Brolluroll . (14)

OnceBroll is known, it is a simple matter to compute a stabi-
lizing control law. We use Ackermann’s formula (Franklin,
Powell, and Workman 1998) to move the long-period unstable
eigenvalue to zero, keeping the other eigenvalues unchanged.
The control authorityBroll and feedback gainsLroll are

Broll =
[−8.32 −3.20 0.541 −8.74 −2.52 −0.895

]T
,

Lroll =
[
0.93 −0.12 0.0061 0.94 −0.15 0.0058

]
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Fig. 4. Five possible stabilization methods. Ankle torque (a), reaction wheel (b), and torso motion (c) all exert control over
trajectory of roll motion. Lateral step width control (d) indirectly affects roll motion, as does torsional spring (e) mounted at
hip.

which show that the control is largely confined to the roll
variables and that the feedbackuroll = −Lroll1x depends
mainly on sensed roll angle and velocity. In fact, it is possible
to stabilize the system using feedback on these two quantities
alone.

Each of the direct methods is unique in the details of how it
may be implemented. However, common among all of them
the energy cost is at least equal to energy of the perturba-
tion. Restricting matters to perturbations to the nominal roll
velocity, q̇∗

roll , and neglecting the relatively small coupling
from stance and swing leg dynamics, the energy difference
associated with a perturbation1q̇roll is

1Eroll = 1

2
Iroll

(
q̇2

roll − q̇∗2
roll

)

= 1

2
Iroll

(
1q̇2

roll + 21q̇roll q̇
∗
roll

)
,

(15)

whereIroll is the moment of inertia in the roll plane of the
entire mechanism about the stance foot. The control must
move the state from the perturbed constant energy trajectory
back toward the nominal constant energy trajectory (see Fig-
ure 5a). The amount of energy needed is at least1E. If the
correction cannot be applied immediately, or if it is desired to
return the reaction wheel to zero velocity or the upper torso
to neutral position, the cost may be several times1E. Power
requirements for an actuator depend on the energy cost and on
the amount of time over which the correction is to be applied.

5.2. Indirect Control

Although there is no possibility of violating the minimum en-
ergy cost to compensate for a perturbation, the indirect meth-
ods do not require the actuator to supply all of this energy.

In the first indirect method, the leg splay is adjusted quasi-
statically during the swing phase so as to control lateral foot
placement, or step width. The control authorityBw gained
from leg splay is found by calculating the differential change
in xk+1 induced by an increment of leg splayβ = uw (see
Figure 4), as in (12) through (14) above. After verifying con-
trollability, we again place the unstable eigenvalue at zero,
arriving at control authority and gains based on step width
control

Bw =[
8.05 3.15 −0.56 8.27 2.52 1.11

]T
,

Lw =[−0.98 0.13 −0.0061 −0.98 0.17 −0.0061
]
.

We apply this control quasi-statically because a small ad-
justment in step width can be performed over any time period
up to an entire swing period. This is in contrast to the direct
methods, which must apply the adjustment quickly and near
the beginning of a step to time the ground contact properly.
The step width control does not need to adjust either the tra-
jectory or the timing of ground contact, because it adjusts the
effect of the contact conditions (8) so that despite the pertur-
bation in trajectory, the next step joins the nominal trajectory
(see Fig. 3b; note that the adjustment does not bring the state
exactly to the nominal trajectory, because the pole placement
is based on linearized equations (14) but is implemented on
the nonlinear system).

The quasi-static adjustment implies that the energy cost
of step width control is small. A theoretical worst-case cost
may be computed by considering the increase in potential en-
ergy that accompanies step width adjustment. A conservative
estimate of this increase is

1Ew ≈ sinqroll(mpl + ml)Lw41q̇roll (16)

where sinqroll is the average of the sine of the roll
angle during a step. Comparing (16) to (14), we note that
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Fig. 5. Stabilization of roll motion via (a) reaction wheel and
(b) step width control. For reaction wheel control, an adjust-
ment to roll velocity must be applied quickly, to restore from
a perturbation (gray) to the nominal trajectory (black) with-
out excessive lag relative to swing leg. When leg splayβ is
used to control step width, perturbed trajectory is stabilized
by manipulating ground contact conditions such that the fol-
lowing step begins near nominal trajectory. In this example,
step width adjustment is made quickly and immediately af-
ter start of step; gains can also be computed for adjustments
applied over longer time intervals.

the cost of roll adjustment is quadratic in the perturbation
1q̇roll , whereas step width adjustment is linear in1q̇roll . For
very small perturbations to the nominal cycle shown here,
1Eroll ≈ 0.051q̇roll , and1Ew ≈ 0.0251q̇roll . The cost of
roll stabilization increases quadratically (15), and that of step
width control linearly, as perturbations increase in magnitude.
A realistic concern in step width adjustment, however, is that
if leg splay is actuated by a lead screw or similar device, fric-
tional losses can be larger than the estimate of (16).

A less practical but nonetheless interesting method of in-
direct control is to add a tunable torsional spring to the pelvis.
With a tunable spring constantKp = uK , the spring produces
equal and opposite torques on the stance and swing legs. We
stated above that it is the swing leg dynamics that dominates
ground contact time and that a perturbation to roll motion
produces the incorrect roll velocity at ground contact. It is
therefore reasonable to consider adjustment of swing leg dy-
namics via tuning of the spring constant,uK = −LK1x dur-
ing the double-support phase. Calculations verify that such
controllability is afforded, with control authority

BK = [−1.06 −2.81 4.910 −0.969 0.638 −1.43
]T

and control gains

LK = [
8.67 −1.12 0.0563 8.73 −1.44 0.0536

]
.

Unfortunately, the cost of this control is considerable; with a
nominal spring constant of 0, the energy that must be stored
as the spring is tuned is

1EK = 1

2

(
q∗

swing − q∗
stance

)2
LK41q̇roll (17)

for a perturbation to roll velocity. Using our nominal param-
eters,1Ew ≈ 1.391q̇roll , which is considerably more costly
than the step width control.

6. Larger Perturbations

Local stability results must be augmented with estimates of
the region of attraction to be useful. It is difficult to charac-
terize the region of attraction within the six-dimensional state
space, so we have adopted the simpler alternative of record-
ing the largest perturbations that can be tolerated in each state
independently without losing stability. The results in Table 2
show that both roll and step width control are quite robust to
disturbances with the exception ofqstance, which can only tol-
erate a perturbation of about 2.4%. The same analysis shows
that the tunable spring control can tolerate a perturbation of
only 0.12%, and so is not worthy of further consideration.

The step width control law also exhibits a degree of ro-
bustness. Lateral stability is retained despite errors in lateral
foot placement of approximately±6%.
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Table 2. Range of maximum tolerable perturbations, expressed in percentages of the fixed point values, for (a.) reaction
wheel control and (b.) step width control.

qroll qstance qswing q̇roll q̇stance q̇swing

a. 1686.4 2.45 24.36 159.81 10.30 943.33
−599.8 −15.88 −12.23 −63.32 −5.14 −196.03

b. 1611.5 2.61 21.95 144.31 10.31 941.81
−2257.6 −15.88 −12.33 −262.26 −5.35 −198.22

7. Parameter Variations

The nominal results above serve as a convenient starting point
for a variety of parameter studies. It will be seen that stable
passive walking cycles are realizable for a wide range of pa-
rameter values and that the choice of values will affect issues
such as stability and efficiency.

7.1. Step Length and Slope

The passive walking mechanism automatically adjusts its step
length so that an appropriate amount of energy is dissipated
at each slope. Unlike the planar mechanism, the 3-D mech-
anism is unable to walk down to zero slope unless the step
width is set to zero, because finite step width implies a finite
loss of energy at each step, regardless of step length. In the
nominal case oflw = 0.15, the mechanism walks down to
a slope of 0.20%. As slope increases, step length increases
roughly with the square root of slope, and roll angle and veloc-
ity, respectively, increase and decrease roughly linearly with
slope (see Figure 6). Along with an increase in step length
is an increase in speed, with the short-period gait speeding
up somewhat faster than the long-period gait. It is also in-
teresting to note that the unstable eigenvalues for both gaits
decrease in magnitude near zero slope. Unfortunately, the
walking cycle disappears before passive stability is achieved.

7.2. Step Width

There are actually two parameters affecting step width. The
first is the pelvis widthlp and the second is the splay angle
β. Together these two determine the step widthlw. Fig-
ure 7 shows variations of slope, speed, and eigenvalues as
step width is varied using both parameters. A greater slope
is needed for larger step width, because more energy is dissi-
pated in a wider step. The long- and short-period gaits actu-
ally converge at a maximum pelvis width of about 0.51, with
the long-period gait increasing in speed and the short-period
gait decreasing. As with increasing slope, the unstable eigen-
values decrease in magnitude with increasing step width, but
again, there is no passively stable gait.

If stability is affected by step width, there may be impli-
cations for choice of leg splay. Figure 8 shows that control
authority for the roll variables decreases with step width, so
that even as the eigenvalues decrease, there is no advantage

as far as control gain on the roll states is concerned. There is,
however, a minor effect on control: the high control authority
and instability narrow step widths require that the sensing of
the roll variables be more precise than they must be for wider
steps.

7.3. Spring Stiffness

As we have shown above, tunable spring stiffness is not a
practically useful method for controlling the roll instability.
However, a nontunable spring is useful for increasing speed
(see Figure 9). Speed increases roughly linearly with spring
stiffness, but unfortunately, the energy consumption (slope)
does as well. The unstable eigenvalues also decrease in mag-
nitude with increasing spring stiffness.

7.4. Mass Parameters

The remaining parameters of importance are the fraction of
mass distributed between pelvis and legs, and the radius of gy-
ration of the pelvis (see Figure 10). Increasing the pelvis mass
mp improves the efficiency with a minimal cost in speed and
stability. The pelvis radius of gyrationrp has practically no
effect on efficiency or speed, but it does improve the stability.

7.5. Combined Parameter Variations

If it is desired to minimize the magnitude of the unstable
eigenvalue, we may be tempted to increase step width, spring
stiffness, and pelvis radius of gyration while decreasing leg
radius of gyration and slope. Casual manipulations of these
parameters can in fact reduce the magnitude to within a few
percentage points of 1. However, we did not find, nor did
we expect to find, passively stable slopes. Our previous in-
tuitive argument leads us to believe that passive stability is
not possible whatever the combination of parameters. Unless
there is an unforeseen passive means to delay ground contact
when a perturbation increases the roll velocity (see Figure 3),
active stabilization should be a necessity. Empirical results
by Coleman and Ruina (1998) suggest that a passively stable
3-D walking machine may be feasible, and other 3-D systems
can indeed exhibit passive stability (Coleman, Chatterjee, and
Ruina 1997), but we do not expect those results to apply to
the present mechanism.
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Fig. 6. Slope and step length variations. (a) Step length increases with slope, as do stance and swing velocities. Long-period
gait (black, solid lines) takes longer steps but with slower swing velocity than short-period gait (gray, dashed lines). (b) Speed
of both long- and short-period gaits increases with slope. As slope goes to zero, both short-period (c) and long-period (d)
eigenvalue magnitudes decrease, but never go below 1.
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Fig. 7. Effect of varying step width, via pelvis width (solid lines) and leg splay angle (dashed lines). (a) For a fixed step length
slope must increase with step width. (b) Speeds of long- and short-period gaits converge for wide steps, after which gait cycles
disappear. (c) Short-period eigenvalues decrease with step width. (d) Long-period eigenvalues also decrease, but there are no
passively stable gait cycles. Asterisks mark nominal parameter values, with step widthlw = 0.15 and pelvis widthlp = 0.3.
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Fig. 8. Step width control authority and feedback gains versus step width, varied via splay angle. (a) Ability to control roll
motion through changes in step width decreases with nominal step widthlw, as do unstable eigenvalues (see Fig. 7). (b)
Feedback gains for roll variables remain nearly invariant to nominal step width, although dependence on stance leg states
increases. Results are shown for long-period gait only.

Other parameters can be manipulated to change the speed
or efficiency (see Figure 11). Slope is a good measure of ef-
ficiency because it is equivalent to specific resistance as well
as energetic cost per unit distance (normalized by weight).
The primary variation that affects efficiency at any given step
length is the leg splay. Increasing pelvis mass or radius of
gyration can also improve efficiency. The only other means
of improving efficiency is to take shorter steps, with a con-
comitant decrease in speed.

One drawback to the use of slope as a measure of effi-
ciency is that it ignores the time it takes to get anywhere. It
is therefore advisable to look at speed for any given slope.
Our results show that increasing pelvis spring stiffness will
increase speed. Otherwise, there is relatively little to be done
to improve speed. Decreasing leg radius of gyration produces
the most pronounced improvement, but there is little freedom
in this design variable. Increasing spring stiffnessKp im-
proves speed substantially, and decreasing pelvis mass yields
a more modest improvement, but both of these come at the
cost of lowered efficiency.

8. Directional Stability

We now assess the validity of the assumption of small angles
and zero yaw, and its effect on directional stability. Relax-
ing this assumption and including terms of second order and
higher, we find that the swing foot makes line contact with
the ground at a yaw angle of approximately 0.00356 rad for
the nominal fixed pointx∗. The machine therefore makes a

very slight change in direction with each step. Augmenting
the state with the yaw angle computed from fully nonlinear
kinematic equations, we find that the yaw mode has an eigen-
value with magnitude approximately 1.01. The lack of neutral
stability is due to the fact that the yaw angle is dependent on
the (unstable) roll angle.

Fortunately, yaw controllability is such that feedback can
easily return this directional mode to neutral or asymptotic
stability. The corresponding region of attraction is quite sub-
stantial; placing the eigenvalue with a magnitude of 0.9, direc-
tional and lateral stability are achieved for yaw perturbations
spanning a range of approximately 0.381 rad (21.8◦). Di-
rectional stability is sufficiently robust that relying only on
feedback of the six original states without yaw sensing, the
range is still 0.273 rad (15.6◦). The machine can therefore be
given directional stability even though it does not explicitly
have a degree of freedom or even the ability to sense in yaw.

In practice, the small angle assumption appears to be valid
if one is content with a machine that has approximately neu-
tral directional stability. Inclusion of higher-order nonlin-
ear terms makes it possible to control yaw with virtually no
penalty in the other dynamical characteristics.

9. Extensions

One obvious extension to the current mechanism would be the
inclusion of knees. Given the encouraging results of McGeer
(1991), we are confident that the 3-D system with knees would
also yield passive gaits, albeit with decreased efficiency.
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Fig. 9. Effect of pelvis spring constant variations. (a) For a fixed step length, slope increases with spring stiffness. (b) Speed
increases with spring stiffness. Short-period (c) and long-period eigenvalues (d) both decrease in magnitude with increasing
spring stiffness, but no passively stable gaits are found.
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Fig. 10. Effect of pelvis mass, pelvis radius of gyration, and leg radius of gyration variations, keeping step length fixed. As
pelvis mass increases, slope increases, speed decreases slightly, and eigenvalues increase slightly in magnitude. As pelvis
radius of gyration increases, slope and speed remain fairly constant, but eigenvalue magnitudes decrease. As leg radius of
gyration increases, slope decreases, speed decreases, and eigenvalue magnitudes increase.



930 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / September 1999

Fig. 11. (a) Slope versus speed and (b) Slope versus step length as functions of parameters. Solid line shows how slope and
speed vary with step length. At a given step length (a), speed is increased mostly by decreasing leg radius of gyration or by
increasing pelvis spring stiffness. Slope can be decreased for given step length by increasing pelvis mass or decreasing splay
angle. At a given speed (b), step length is decreased by increasing pelvis spring stiffness.

There are a number of ways that additional actuation can be
advantageous. Powered walking is possible through actuation
at the feet and at the hips. Our preliminary studies show that
passive and controllable gait cycles can be found for walking
on zero slope, using impulsive pushing by the stance foot. In
fact, passive cycles with long and short periods exist for a
wide range of magnitudes and angles of impulses.

An additional actuated degree of freedom is also necessary
for the mechanism to turn. A natural location for this degree
of freedom would be at the hip or ankle, allowing rotation
about the axis of the leg.

Attractive as these extensions may appear, each new ad-
dition will yield a diminishing return in insight. It is worth
appreciating that these insights must be balanced against the
remarkable simplicity and purity of vision of the simple planar
walking machine.
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