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Abstract

Passive dynamic walking, a phenomenon originally described
for bipeds having straight legs, also works with knees. Thus
given only a downhill slope as a source of energy, a human-
like pair of legs will settle into a natural gait generated by
passive interaction of gravity and inertia. No muscular input
is required. The physics is much the same as in straight-
legged walking, but the knee-jointed form has two advan-
tages. First, it offers a simple solution to the problem of foot
clearance during the recovery phase. Second, in some cases
it is more stable.

Straight legs vs knees

Walking can be a natural mode of a simple mechanical de-
vice; it does not require the continuous forcing which is used
almost invariably in robot design. This is the essence of pas-
sive dynamic walking, which I reported at the 1989 Robotics
& Automation Conference [McGeer 89]. Similar ideas have
recently been developed for hopping and running as well
[Thompson 89], [McGeer 908]. The simplest demonstration
is provided by a mechanism consisting only of two rigid legs
hinged at the hip. Such a device will walk all by itself on a
downhill slope. The same mechanism can also be made to
walk on the level and uphill by “pumping” the passive mo-
tion, and the gait can be modulated to vary footfalls from one
step to the next. Thus the passive walking effect can serve
as a foundation for dextrous and efficient legged locomotion.

Here we add knees to the catalogue of design options. Our
motivation is twofold. First, knees make the gait more an-
thropomorphic, which is aesthetically pleasing and also use-
ful for study of walking in nature. Second, knees solve the
problem of toe stubbing in the so-called recovery phase, when
the free leg is brought forward in preparation for the next
step. Our straight-legged biped (described at the 1989 con-
ference) had to clear its feet actively during recovery, using
small retraction motors in each leg; these substantially com-
plicated an otherwise passive design, and moreover used a
lot of energy. The machine needed only about 0.23 per step
(obtained by going downhill) to keep the passive cycle going;
meanwhile to motors consumed 3J per step! By comparison
foot clearance by knee flexure offers a solution that is passive,
efficient, and reliable.
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Figure 1: A chain of four rigid, inanimate links will walk
all by itself down a shallow incline. The motion is two-
dimensional (i.e. confined to the plane of this drawing), but
quite human-like (cf. figure 2). Links are connecied by pin
joints, with mechanical stops at the knees to prevent hyper-
extension. Here the stance knee is shown locked against ils
stop. Thigh and shank have inertias myryyer and msroyrs
about their respective mass centres, and the model can also
include a point mass at the hip. Feet are semicircular. Many
models of this general form will walk passively; geometry and
mass properties are broadly adjustable.

The model and its cycles

Figure 1 shows our model for knee-jointed walking. We con-
fine attention to the simplest example, with no source of
energy other than a downhill slope, and only a point mass
at the hip to represent a torso. All of our calculations are
cast in dimensionless terms, with overall mass m, extended
leg length I, and gravity g providing the base units.



At first glance one might think such a contraption rather
unlikely to walk all by itself. However upon more careful
study [Mochon 80] found that it was capable of so-called bal-
listic walking. That is, if the limbs were given appropri-
ate speeds and angles at the start-of-step, then they would
swing passively through to heel strike in a perfectly natural
style. We have found that impulse generated at heel strike
can then regenerate the start-of-step conditions, thus com-
pleting a passive cycle.

Figure 2 shows an example. The step begins and ends
with both feet in contact and both legs extended, which in
the plot is indicated by equal and opposite leg angles. (These
angles are measured from the hip to the centres of curvature
of the feet. They differ by ep (figure 1) from the angles
from hip to knees, which we have shown in the cartoon.)
Both the midstride swing knee lock, and the end-of-step heel
strike, are treated as impulsive, inelastic collisions. Therefore
both produce instantaneous changes in link speeds, and in
particular heel strike changes the speeds back to their start-
of-step values. Then the new step begins, so to speak, right
on the heels of its predecessor (cf. figure 9).

It may seem remarkable that such a simple inechanism
should be capable of such an elaborate, and cyclic, behaviour.
If so, then it must be even more remarkable that the cycle
of figure 2 is not the only possibility. The same machine,
on the same slope, can also walk passively using the gait of
figure 3. (Straight-legged bipeds have similarly paired alter-
natives [McGeer 90c].) Of the two choices the shorter-period
gaits are generally less attractive, mainly because they are
almost always unstable. Furthermore they are often (though
not in this example) less efficient than the longer-period
gaits, that is, they need a steeper slope for the same forward
speed.

Calculating the cyclic motion

Steps such as those plotted in figures 2 and 3 have four in-
dependent initial conditions: the stance angle 8¢, and the
rotational speeds of the stance leg (S2¢), swing thigh (QFr),
and swing shank (Qps). Together with the slope v these
determine the initial conditions for the next step, through
some stride function S
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S is a fairly complicated operator; it involves integration
of equations of motion from start- to end-of-step, combined
with calculation of the impulsive speed changes at knee lock
and heel strike. For straight-legged walking these proce-
dures can be done analytically, since the equations of motion
are amenable to linearisation. ([McGeer 89] summarises the
derivation.) However in a knee-jointed step, as indicated in
figure 2, the swing shank in particular reaches large angles
and speeds. Hence the nonlinear dynamic effects must be
retained, and § must be evaluated numerically as follows:
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Figure 2: A typical passive cycle for the model of figure 1.
Angles in the plot are relative to the surface normal, which
is tilted al 4.6% from the vertical. Thigh and shank parame-
ters are comparable to those of a human [Chapman 83], with
68% of the overall mass concentrated at the hip. Time is in
units of \/I/_, 1 being the length of the extended leg and g
the gravitational acceleration. The stance leg stays eztended
through the step, while the swing leg flezes through midstance
and so clears the swing fool. Then it returns to full extention,
hits the stop inelastically, and remains locked until the foot
strikes the ground. The impulse at foot strike changes the
links speeds back to their start-of-step values, and the cycle
repeats.
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Figure 3: The same model, on the same slope, can walk pas-
sively in either the gait of figure 2 or the gait plotted here.
We call this the “short-period” cycle. It offers slightly higher
speed than the long-period cycle, but it is unstable and there-
fore less attractive.

1. Numerically integrate equations of motion for a 3-link
chain from start-of-step until the swing knee locks.

2. Calculate the change in speeds at knee lock.

3. Numerically integrate equations of motion for a 2-link
chain from knee lock until the swing foot strikes the
ground.

4. Calculate the change in speeds at heel strike.

Despite these complexities, the essential form of the stride
function remains simply as stated by (1), and a cycle is in-
dicated by an argument which maps onto itself. To find
such an argument we use Newton’s method. Thus we first
specify the desired c (which is equivalent to specifying step
length). Then with the analytical straight-legged solution
for guidance [McGeer 90a], we “guess” appropriate values
for the link speeds and slope, and evaluate 5. In general
it produces an output different from the input. Newton’s
method therefore calls for an adjustment satisfying
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We evaluate the gradients numerically, and then solve for
a new set of initial speeds and slope. If a cyclic gait exists,
then this procedure converges rapidly, usually to 5 significant
figures in each variable within half a dozen iterations.
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Figure 4: Swing foot clearance and knee torques during the
step of figure 2. Foot clearance is ezpressed as a fraction of
extended leg length. The foot has a close call at midstride, but
humans seem to manage with a similarly slim margin. Mean-
while naturally arising torques keep the knees locked against
their stops during the appropriate parts of the step. Torque
is in units of mgl, m being the total mass of the model.

contact
force

Figure 5: The locked knee angle ex is an important design
parameler. The force on the stance fool is directed roughly
from the contact point {o the overall mass centre, which is
usually near the hip. This vector must pass in front of the
knee if the contact force is to keep the stance leg locked againsi
its stop. Hence the foot’s centre of curvature must be placed
well in front of the knee, which calls for a human-like geom-
etry. Notice that as the step proceeds the force vecior moves
forward, and so the locking torque increases. Hence the worst
case for design arises at the start of a long step.
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Figure 6: The need for an anthropomorhic foot and shank is
illustrated by studying models with various knee-locking an-
gles. If the locking angle is made smaller (i.e. feet further
back) then the contact force tends to flex rather than ertend
the stance knee. With further reduction the long- and short-
period gails merge and “pinch off ”; models with feet further
aft cannot walk passively. On the other hand models with feet
too far forward would have trouble with toe-stubbing, partic-
ularly in the short-period gait.

Foot clearance and knee locking

The practical motivation for knees is swing foot clearance,
and figure 4 illustrates the level of clearance offered by the
passive gait. Also shown are the torques on the knee joints
while the legs are extended. In this example both foot clear-
ance and knee torques are satisfactory, but some care in foot
design is required to achieve this result. In particular, here
the foot radius is 0.2[; a larger value would reduce foot clear-
ance. (If for example the centre of curvature were coincin-
dent with the knee, then flexure wouldn’t lift the foot at all.)
Thus knees only prevent toe-stubbing if the feet are not too
large. Also, here the centre of curvature is placed well in
front of the knee (ex = 0.2). This is necessary for passive
locking of the stance leg; moving the foot back would make
the passive torque flexural (as suggested by figure 5) and so
call for active intervention to prevent the leg from buckling.
Thus an anthropomorphically asymmetric foot is obligatory
for passive walking; the heel musn’t stick out as far as the
toe!

Actually in evaluating the stride function, our numerical
integrator simply follows the procedure outlined in the pre-
ceding section, stopping only when the stance and swing an-
gles become equal and opposite. Thus it doesn’t care whether
the foot clearance or locking torques become negative during
the stride. But although we can therefore search, usually we
cannot find cyclic gaits for models beset by such problems.
Figure 6 provides an illustration: if the feet are moved back
on the shank, the stance knee goes into flexure and must be
locked actively. If the feet are moved further back, cyclic
solutions vanish. Increasing foot radius has a similar effect.
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Figure 7: To walk at higher speed a passive biped needs
a steeper slope. Here the speed is in units of \/gl. The
plot shows calculations for both knee-jointed walking as
in figure 2, and straight-legged walking as described by
[McGeer 89] (i.c. for the same model but with both knees
locked throughout). The stiff-legged and knee-jointed gaits
are visually quite different, bul the comparison here shows
that their dynamics are really the same. (Note that there is
no knee-jointed cycle for speeds less than 0.03+/gl.)
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Speed and efficiency

In gravity-powered walking higher speed requires a steeper
slope. Figure 7 shows the quantitative relationship for
our example model. Also shown is the behaviour of the
same model in straight-legged walking (as calculated by the
method of [McGeer 904]). The two gaits have remarkably
similar performance, which leads to the satisfying conclu-
sion that the simpler straight-legged model goes a long way
toward explaining the behaviour of a knee-jointed machine.
By the same token it seems reasonable to suppose that our
relatively simple knee-jointed model has much to say about
walking in nature.

One might also conclude from the comparison that knee-
jointed and straight-legged machines are equally efficient.
However that is not quite true. A knee-jointed machine has
an additional mechanism for energy dissipation, namely the
collision at swing knee lock. In our example here its effects
are modest, but they would be larger with different parame-
ter choices (especially a smaller hip mass). Moreover a knee-
jointed machine is constrained to use some combination of
small foot radius and forward foot displacement in order to
generate a positive locking torque. Either leads to arelatively
hard and therefore dissipative heel strike [McGeer 90d]. A
straight-legged designer is free of these requirements, and so
can build a model with higher “fundamental” efficiency. But
on the other hand he must provide for active foot clearance;
in our experience this becomes so expensive in practice that
knee joints win the day.
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Figure 8: Fully passive walking requires not only ezistence of
a repetitive cycle, but also stability. Analysis of small pertur-
bations on the cyclic motion leads to a 4** order difference
equation; here a locus of eigenvalues is shown for the model
of figure 7. All four eigenvalues have magnitude less than
unity throughout the speed range, so the model is always sta-
ble in “long-period” walking. (However the same model is
unstable in “short-period” walking, and some other designs
are unstable in both long and short gaits.)

Comparison with human walking

The gait of figure 2 is obviously anthropomorphic. However
the timescale is slower. My own steps usually have period less
than 2.01/7/g, whereas the passive model has a short period
of 2.44/1/g and a long period of 2.7\/17;. These figures would
be slower still with an extended torso rather than a point
hip mass [McGeer 90c]. On the other hand, [McGeer 90¢|
has shown that it can be attractive to use higher cadence
when the cyclic gait is “pumped” rather than sustained by
descending a slope. This accounts for some of the discrep-
ancy between man and gravity-powered model; another por-
tion is likely due to torsional stiffness in man’s joints. You
can feel an elastic effect as you stretch a knee to full exten-
tion, or swing your legs apart at the hip; [Cohen 85] and
[Mansour 86] offer quantitative measurements of the torques
involved. This elasticity increases the legs’ pendulum fre-
quencies, and so cadence in walking. However (at least in
the straight-legged case) it also causes a harder and more
dissipative heel strike. A free-jointed machine, achieving the
same speed with longer steps but slower cadence, would be
more efficient. But then human legs, presumably, are not
made just for walking.

Stability

Practical passive walking requires not only existence of a
cyclic motion, but also robustness of the cycle with respect
to perturbations. The response to some perturbation can be
followed from step to step using the stride function (1). If the

Table 1: Step-to-step modes for the cycle of figure 2

mode 1 2 34

mag. | phase
eigenvalue, z || -0.001 || 0.073 || 0.447 [ £0.947
Abc 0.075 || 0.119 || 0.270 0
AQc -0.059 {l -0.079 |} 0.200 | ¥2.573
AQpr 0.189 { 0.688 [{ 0.628 | F0.323
AQFps -0.977 || -0.711 |} 0.702 | +3.140

perturbation is small then the calculation can be simplified
by linearising as in (2). The result is a fourth-order difference
equation:
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where ‘A’ indicates a perturbation from the steady-cycle ini-
tial conditions. Stability can be assessed by calculating eigen-
values and eigenvectors of the gradient matrix (which is itself
found by numerical differentiation of 5")

Table 1 lists the resulting “step-to-step” modes for the
long-period cycle of figure 2. Perturbations in any mode
scale over k steps in proportion to z*. Here all four eigen-
values have magnitude less than unity, so the cycle is sta-
ble. In fact while the knee-jointed model might appear
rickety by comparison with its straight-legged counterpart,
its recovery from perturbations is actually more rapid. (In
fact this particular model walking straight-legged - i.e. with
knees locked throughout — would have an unstable eigenvalue
at z = —1.27!) Furthermore knee-jointed walking remains
rapidly convergent over a wide range of speeds (figure 8).

Further inspection of table 1 offers some insight into tran-
sient behaviour. If a step starts with (small) perturbations
in Qpr and Qps only, and not in the stance leg, then only
the first two modes will be appreciably excited. Since these
have very small eigenvalues, such perturbations are essen-
tially eliminated in only one step. However if the perturba-
tions include ¢ (i.e. wrong step length for the slope in use)
or Q¢ (i.e. wrong speed), then the slower complex mode
is excited. The subsequent recovery oscillates over several
steps.

Large perturbations

Linearised stability analysis provides excellent information
on the rate of recovery from perturbations, but none at all
on the magnitude of perturbation which can be tolerated.
To probe the limits one must resort to “exact” step-to-step
evaluation of the stride function following perturbations of
various size. Figure 9 shows two examples, in which the
initial perturbations are scaled in proportion to the complex
eigenvector of table 1. (However the perturbations are not
“small”, so the transient is not as predicted by the linearised
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Figure 9: While passive walking is stable with respect to small
perturbations, it can lolerate only a limiled amount of abuse.
These ezamples show leg angle transients following distur-
bances on the “long period” cycle (cf. figure 2 for labelling
of the curves). In the first ezample the model recovers af-
ter o few steps. In the second, which begins with a slightly
larger disturbance, the model teeters for a few steps and then
collapses ignominiously on its face!
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stride function.) The machine is able to recover from fairly
large disturbances, but not so large as a practical robot would
likely have to handle in the wild. Active stabilisation would
enhance robustness; some examples (for passive running) are

given by [McGeer 90).

Experiments

At the time of writing we are completing a machine for ex-
periments in knee-jointed walking. The machine has about
4kg total mass, and 70cm leg length. Motion is kept two-
dimensional by building the legs in crutch-like pairs. Piston-
type oil dashpots are used for the knee stops; these ensure
an inelastic collision when the swing knee locks. (The shank
would bounce off a plain mechanical stop.) This part of
the design requires some care, but otherwise the machine is
elementary. Its simplicity, combined with the similarity be-
tween knee-jointed walking and the already-proven straight-
legged form, favour a successful result. But still, as we men-
tioned earlier, intuition does not immediately suggest that
such a contraption will walk by itself. Seeing is believing.

Nature knows best

People encountering our original straight-legged biped would
often ask, “Why doesn’t it have knees?” We always replied
that they were not necessary; we could telescope the legs
rather than fold them, and so simplify analysis as well as

mechanical design. Thus might the engineer’s sleek machin-
ery soon dispense with nature’s awkward contrivances.

But a closer comparison reveals that nature is not so
easily outdone. Legged locomotion itself, though at first
glance unimpressive by comparison with the smooth rolling
of wheels, turns out upon inspection to be an equally elegant
way of getting around. One is steady, the other cyclic, but
both are pure physics in action. Now so it seems with knees.
How many more examples of nature’s dynamical sensitivity
lie waiting to beguile the engineer?
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