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Abstract— The passive dynamic walker described in this paper
is a robot with a minimal number of degrees of freedom, but
which is still capable of stable 3D dynamic walking. First, we
present the reduced-order dynamic models that we used to
tune the characteristics of the robot’s gait. Then we present an
actuated version of the robot and some preliminary active control
strategies. The control problem for the actuated version of the
robot is interesting because although it is theoretically challenging
(4 degrees of under-actuation), the mechanical design of the robot
made it relatively easy to create controllers which allowed the
robot to walk stably on flat terrain and even up a small slope.

I. INTRODUCTION

In the late 1980’s, Tad McGeer [1], [2] introduced a class
of walking robots, known as passive dynamic walkers, which
walk stably down a small decline without the use of any
motors. The most impressive passive dynamic walker [3] has
knees and arms, and walks with a surprisingly anthropomor-
phic gait. As a whole, these machines provide an elegant
illustration of how proper machine design can generate stable
and potentially very energy efficient walking. The ideas,
however, are only now beginning to have an impact on the
way in which fully actuated bipedal robots are designed and
controlled (i.e., [4], [5]).

To bridge the gap between passive and active walkers, a
number of researchers have considered the problem of adding
a small number of actuators to an otherwise passive device
[6], [7], [8]. There are two major advantages to this approach.
First, actuating a few degrees of freedom on an otherwise
passive walker is a possible way to capitalize on the energy
efficiency of passive walking and the robustness of actively
controlled systems. Second, by allowing the dynamics of the
system to solve a large portion of the control problem, it may
be possible to simplify the control problem that needs to be
solved by the actuators.

The goal of this paper is to describe the mechanical design
of our simple 3D passive dynamic walker, and the design
of some preliminary active control strategies that have been
applied to a partially-actuated version of that robot. These
relatively simple controllers allow the robot to walk on flat
terrain, and even up a small slope.

Fig. 1. The Passive Walker

II. PASSIVE DYNAMIC WALKER

The passive dynamic walker shown in Figure 1 represents
the simplest machine that we could build which captures the
essence of stable dynamic walking in three dimensions. It has
only a single passive pin joint at the hip. When placed at
the top of a small ramp and given a small push sideways, the
walker will rock onto a single stance leg, allowing the opposite
leg to leave the ground and swing forward down the ramp.
Upon landing, the robot rocks onto the opposite foot, and the
cycle continues. A number of videos have been included in
the proceedings.

The energetics of this passive walker are common to all
passive walkers: the energy lost due to inelastic collisions
when the swing leg returns to the ground are balanced by
the gradual conversion of potential energy into kinetic energy
as the walker moves down the slope. The particular challenge
for this walker was the design of the large curved feet. Using
only reduced planar models of the dynamics, we were able
to design feet which tuned the step frequency of the robot
sufficiently well to produce an elegant and robust gait.

A. Frontal Plane Model

To model the dynamics in the frontal plane, we assume that
the robot is always in contact with the ground at exactly one
point and that the foot rolls without slipping. The equations
of motion, in terms of body angle � , for this planar model are
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Fig. 2. Frontal Plane Model

given in three parts using the form��� ���	���
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portion one of the feet (the boundary condition on the outside
of the foot is not modeled), and the dynamics are:�
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When � �>��?@� , the ground contact is along the inside edge
of the foot. In this case, the dynamics are:��� ���!�#"�
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Finally, the collision of the swing leg with the ground
is modeled as an inelastic (angular momentum conserving)
impulse, ��POQ�R���ST0A1�3 U ,JVXWY7ZS\[)] (L3H5I7^�(G0A1	3��_*Q%a`Eb �
which occurs when �T��� .

The actuated version of the robot, presented in section III,
carries its mass very differently than the purely passive version
of the robot, due to the added mass motors and sensors. By
simulating this model, we were able to find very different
radii for the feet in the frontal plane that allowed the different
versions of the robot to both oscillate back and forth at the
desired frequency of approximately 1.4Hz.

B. Sagittal Plane Model

In the sagittal plane, the dynamics are a slightly modified
version of the well-studied compass gait [9]. The parameters
of this model can be found in Figure 3, and the dynamics are
given by: c �ed � �d 
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Fig. 3. Sagittal Plane Model

where
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The abbreviation � � stands for the stance leg, and �~� for the
swing leg.

The primary determinant of step length and forward velocity
is the slope of the ground, w . Our robot walks on a small
treadmill with an actuated incline. The curvature of the feet
in the sagittal plane should be set so that the pendular period
of the system approximately matches the step frequency from
the frontal model.



C. Experiments

Using a 1.4Hz step frequency as a target, the planar models
can be used to find values for the radius of curvature of the feet
in the frontal ( (F� ) and sagittal ( ()l ) planes. We constructed
experimental feet using a CNC milling machine to cut out the
surface given by:� ��� ( '� *G� ' *Q( � 
#� ( 'l *G� ' *G( l �
Using these feet, this simple passive structure produces stable
periodic trajectories when the robot is placed on a small
decline. Figure 4 plots some sample trajectories of model
walking down a slope of ��� �P�	� radians which demonstrate
this stability. �Y�X�6��� is the roll angle of the body of the robot, in
radians, which was simply called � in the frontal plane model.
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Fig. 4. Experimental Limit Cycles. The limit cycles are plotted in phase
space, with cross hairs at the origin and a dot at the initial conditions of the
robot. The first plot shows the recovery from large initial conditions, and the
second shows recovery from small initial conditions.

There are a number of aspects of the walking that are not
captured by the planar models. The frontal and sagittal plane
dynamics are actually coupled; converted potential energy
from the sagittal plane is used to stabilize the oscillations in
the frontal plane, as Figure 4 illustrates. Also, the swing leg
creates an uncompensated moment about the � -axis, which
occasionally causes the robot to twist and change direction,
making it walk across the ramp instead of down it. This yaw
moment can potentially be compensated for by adding arms to
the robot [3]. Finally, the robot is attached to the computer and
power supply via a tether. Because the robot is so light, the
tether can actually have a significant impact on the dynamics,
acting almost as a leash on the robot.

D. Stability

Traditionally, the local stability of the passive walkers is
quantified by examining the eigenvalues of the linearized step-
to-step return map [1], taken around a point in the period either
immediately preceding or immediately following the collision.
The sensors on our robot do a poor job of sensing the impact,
but we have evaluated the return map through the hyperplane
when � �o�y��� ��� . This is the point in the cycle when the robot
passes through the vertical position in the frontal plane, which
is the expected point of impact. By evaluating the return map
over a small number of recorded trials when the robot walked

straight down the ramp, the largest eigenvalue, ��W.�F� ��� , was
found to be approximately ��� � .

In practice, the robot is quite stable to large perturbations in
the frontal plane when they add energy into the system. Very
large perturbations cause the robot to tip over sideways. The
robot has a stable fixed point at �Y�X�6���^� ��.�X�6���E� � , so large
perturbations which remove energy from the system often
cause the robot to come to a standstill. Large perturbations in
the sagittal plane often caused the robot to fall over forward
or backward. Walking trials were nearly always started with
the legs at the same absolute angle. It was not necessary to
give the robot any initial forward velocity.

III. TODDLER - THE ACTUATED VERSION

In order for the robot to walk on the flat, it must actively
restore the energy lost during impact. One candidate active
control strategy would be to apply torques at the existing
hip joint, but it may be difficult to actuate the hip without
disrupting the basic passive gait. On the robot shown in Figure
7, the hip joint is passive, but we have added two active joints
(pitch and roll) at each ankle. We call this robot “Toddler”
for two reasons. First, the word toddler is normally used to
describe a child during the time that they are learning to walk,
and this robot was primarily designed to investigate learning
algorithms for dynamic walking. The name is also appropriate
because the robot literally toddles back and forth when it
walks.

Fig. 5. The Toddler Robot

Toddler’s four active degrees of freedom are actuated by
servo motors through mechanical linkages. They are config-
ured so that when the motors are commanded to hold their zero
position, the robot simulates the passive walker. The robot is
also equipped with a two axis (pitch and roll) gyroscopic tilt
sensor and a potentiometer at the hip to measure the relative
hip angle. The control algorithms are run on an embedded
PC/104 stack with a 700 MHz processor.

By assuming that the robot is always in contact with the
ground, we can describe the generalized state of this robot
with eight variables - body yaw, pitch, and roll, the relative
hip angle, and pitch and roll for the two ankles - plus their
derivatives. Because the robot only has four actuators, is



clearly an under-actuated system. The challenge is to produce
a control strategy for the ankle actuators which (directly or
indirectly) controls all eight degrees of freedom.

IV. STABILIZING FRONTAL PLANE OSCILLATION

The planar model was a simplification of the dynamics when
the robot was on a ramp, but it is a reasonable representation
of the robot’s dynamics when it is placed on a flat surface. The
frontal plane model for the actuated version can be written as:c ��d � �d 
Rf ��d � �d � �d 
Rg ��d �:�#�:�
where

d �kj ���6� �I� �6� �o� r�s and �Q��j ���6� �I� �6� �X� rts . The abbrevi-
ations ��% and ��% are short for left and right ankle, respectively.
The impact model can be written as�d O ��  ��d � �d S �
At each collision with the ground, the kinetic energy of the
system, ¡ , changes by:¢ ¡#�£{, �d sQ¤   ��d � s c ��d �H  ��d �4* c ��d �q¥ �d �
In order to stabilize the oscillations in the frontal plane, the
control torques, � , must restore the energy lost from these
collisions. In the following sections, we will discuss two
simple actuation strategies that have already been applied
successfully to the robot.

A. Feed Forward Ankle Trajectories

The ankle servos are PD controllers which follow a ref-
erence trajectory. The first actuation strategy that we experi-
mented involved playing out a feed forward trajectory which
applied a periodic drive to the robot’s ankles:��¦�X� �uBT3H5I7 � ,.§Z¨ � �� ¦�I� �@*G� ¦�X�
Whether or not the robot’s dynamics could entrain to the dy-
namics of the controller depended on the relationship between
the controllers frequency, ¨ , and the passive step frequency of
the robot. Surprisingly, the best entrainment occurred when the
controller was a little slower than the passive step frequency.
The entrained robot took such large, slow steps that one
believes that the robot will eventually be able to navigate
rough or intermittent terrain. We believe that the success of this
simple controller can be attributed to the mechanical design
of the robot.

Local stability analysis of the limit cycles generated by the
feed forward controller suggests that they are slightly more
stable than the purely passive limit cycles, ��WY�F� ���J©ª���¬«P, .
Even this number may be artificially high, because the trajec-
tories appear to mostly converge within 2 cycles, but there is a
lot of noise around the converged trajectories. Practically, this
controller is not very stable because any sizable disturbance
will knock it off the cycle.
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Fig. 6. Example Feed forward Limit Cycle

B. Feedback Ankle Trajectories

A more direct approach to stabilizing the roll oscillations
is to build a controller which, on every cycle, injects the
same amount of energy back into the system that was lost
during that cycle. Unfortunately, due to the limitations of the
sensor hardware on the robot, it is difficult to measure exactly
the amount of energy lost at the time of each collision. The
actuators of the robot are driven through a PD position control
board, so it is also difficult to inject a very specific amount of
energy into the system.

Instead of modeling the energy from the sensors and
generating a corresponding torque at the ankle, we have
implemented a feedback control strategy inspired by Marc
Raibert’s height controller [10] for hopping robots. The idea
is to inject an approximately constant amount of energy into
the system during every cycle. The system will settle into
a stable oscillation with an amplitude that is monotonically
related to the energy injected. The amplitude can then be tuned
experimentally by changing the amount of energy injected into
the system. An analysis of this idea can be found in [11].

The heuristic for injecting a roughly constant amount of
energy on each cycle is as follows. As the robot rotates from an
upright position onto one foot, it will cross a threshold position
at which the stance ankle is servo-ed by a small fixed amount,
causing the robot to accelerate further in the direction that it
was moving. As the robot is moving back toward the upright
position and it crosses that threshold again, the ankle is servo-
ed back to the original, zero position, which further accelerates
the robot toward the upright position. It is important that both
ankles be at the zero position at �Y�X�6���\��� in order to minimize
the energy lost by the collision with the ground.
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Fig. 7. Example Feedback Limit Cycle

The local stability analysis of this controller, ��W.�­� ����©



��� ®P� , reveals that this controller converges faster than the open-
loop controller and faster than the purely passive trajectory.
Practically, this controller is very stable. It is able to recover
from very large disturbances, and from very small initial
conditions.

V. VELOCITY CONTROL

The robot walks in place when the center of mass of the
entire robot is directly above the point of contact between the
foot and the ground. When the center of mass is out in front
of the ground contact point, the robot will lean forward. As
soon as one leg leaves the ground, the passive joint at the
hip allows it to swing forward, and the robot begins walking.
This happens naturally when the robot is on an incline. The
farther the center of mass is from the ground contact point, the
faster the robot will move in that direction. On Toddler, the
operator specifies the desired forward speed by joystick, and
the corresponding placement of the center of mass is controlled
by actuating the ankle pitch actuators. The heuristic makes it
easy for Toddler to walk on flat terrain, and even up small
inclines.

The direction of the robot can also be controlled, to a limited
degree, by differentially actuating the right and left ankles
(either pitch or roll). Currently, the yawing of the robot due
to momentum of the swing leg and slipping on the stance leg
limit the controllability of the robot’s heading. Future versions
of the robot will have arms to compensate for this yaw, and
should be able to turn more accurately.

VI. CONCLUSIONS AND FUTURE WORK

The passive dynamic walker presented in this paper has
only a few degrees of freedom, but it is capable of stable
3D dynamic walking. The dynamics are simple enough that
they can be fully modeled and understood. We have presented
the preliminary modeling work, which considered the frontal
and sagittal planes individually, and are currently studying the
three dimensional dynamics to better understand the coupling
terms.

The control problem for the Toddler robot is interesting
because although it is theoretically challenging (4 degrees of
under-actuation), the mechanical design of the robot made it
relatively easy to create controllers which allowed the robot
to walk stably on flat terrain and even up a small slope. This
feature of the robot makes it an excellent platform for studying
machine learning control strategies, which is the true focus of
our project. In the future, we would also like to implement
more elegant model-based, under-actuated control strategies
that might allow for improved active control of step length
and stride frequency, and possibly allow the robot to walk
over rough or intermittent terrain.
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