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states with

s for the nominal regime synthe51s based on the prescribed synergy
9ly, Py er™ ~k fcept
'ansformatlon
we are dealing with mechanical systems for artificial locomotion,
ther consideratlons of ‘applicability of the prescribed synergy will
(1.3.3)

réstricted only to the problem of nomlnal regime synthesis for this
55 of mechanisns.

.Ows

3.1. Single-support phase
g q1+@) (1.3.4)

‘e “locomotion activity of a biped has certain important characteris~-

'be synthesized. They have already been mentioned in Section 1.1

t we are going to review them briefly and then, concentrate on the

oblem of artificial gait synthesis based on the prescribed synergy
hod.

(1.3.5)

ince the sets ’

most important characteristic is the presence of the unpowered
0. f which occur only with the locomotion mechanisms,
¢ importance for their stability as a whole. Namely,
ct of the foot and the ground, an additional d.o.f.

icsg) are com-

and are of
a way that Px n e

in the con-

is formed. The
“hanism would rotate around the foot edge if an undesirable situati-

;happened and the task of control system is to prevent this. Howe-

r, each regular" d.o. £., except the unpowered one, is powered and

ontrqllad by its own actuator and any deviation from its nominal sta-

can be correctsd only by an appropriate dynamics of the rest of the
ystem. Because the "rest of the system"

(1.3.6) in case of locomotion mecha-
‘.ms is, in fact, the whole mechanism (the unpowered d.o.f. always
ppears at the lowest end of the system),
omotion mechanism is “"responsible" for the behaviour of the unpowe-
d d.o.f. If a complex mechanlcal structure is involved (the structu-
%€ with a greater number of d. o.f.), the problem appears to be extrem-
lyjlnconvenlent both for the nominal motion synthesis and'the control

ial equations,
e unknown dyna=
n generalized

the dynamics of'the whole

(1.3.7) of -locomotion processes in the presence of disturbances.
(1.3.8) The second characteristic of such mechanlsms which is of 1mportancefor
the gait synthesig, is the variable mechanism structure. In the walking
athematical

rocess, the system is alternatlvely supported on the one and both feet,

\d- in this way, the configuratlon of the legs' kinematic chain changes
rom the open to a closed one. When the mechanism is supported on one
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leg, the situation is recognized as. single—support phase, when both can be anywhere i

‘the ZMP can move
not, depending on

feet are on the ground, as double-support phase, Each of these cases
gives a quite different dynamic portrait and has to be modelled sepa~-

. rately. - . ;
A third characteristic is related to the periodical character of the
mechanism motion in the walking process. The positions and velocities
".at the beginning and at the end of each step have to be the same, so
that the walk can be performed continuously.
It is obvious that the motion of biped systems is very complex either
from kinematic or dynamic point of view. The dynamics has a dominant
role because of the existence of unpowered d.o.f. A further understan- , Fig., 1.2. LongitJZ‘
ding of the walking process require a detailed description of the beha- ‘ ggdpgﬁss
viour of those d.o.f. related to the motion. of the whole system. The .
information about the forces, i.e., about the torques at mechanism® s .
joints and the ground reaction forces under the foot (concernlng both 3 The basic idea use |
intensities and directions), are very useful in determining the _sys— . .} . ~change of vertical
tem's behavipur. The following experiment can serve as proof that the o force) under the £
human control system regulates locomotion with respect to forces. A ‘ : bed-part of dynamic
healthy man with a temporary artificially paralysed vestibular system - ; nally restricts the
‘of natural gyroscopes can walk in a stable gait without great difficul- - £ certain point tepre
"ties under the condition that a visual feedback is preserved. In such ! are ieduced to it,
case, he is simply not able to ‘keep a permanently steady attitude du- : tor M has always a
ring the gait. However, the same person, with his vestibular system ' L tions have to be sa{
functioning properly but with the locomotor = muscle system of his ) ally orthogonal axe
lover extremities artificially paralysed moves in the same way as a 4 t? Zero.
paralysed paraplegic person. It is quite clear that a healthy man
"feels" forces, i.e., dynamic reactions, and distributes them in some ’MX =0 My =
manner in the form of driving torques along his skeleton actlvated by
numerous muscle groups. Force sensing at the feet of a healthy person . As for the friction
is a global feedback which takes care of the overall system behaviour ‘ TeSpect to a vertic:
and can be applied to artificial mechanisms, too.
. MV =0
Let us suppose the system is in the single-support phase and the contact . )
with the ground is realized by the full foot (Fig. 1.2). Then, it is ? . ‘The ax1s V can be ck
possible to replace all vertical elementary reaction forces by the ; e (the ZMP, then the ax
“resultant Ry. If we reduce .it to the centre of supporting. area, the s frame, ana v will be
’vreactlon force N and moment M will be obtained. As the pressure dia- ‘
gram-is.of the same sign, the reaction force Rv can be always computed ,ﬁ i Th? efternal forces
'-'Obvlously, the ZMP in single-support phase cannot be out of the suppor=- ‘ frlCtlonf and groung
‘ ting area {area covered by one foot), while in double- support phase it ' and moments of inert




.se, when both
of these cases
‘"modelled sepa-

\aracter of the
; and velocities
)e the same, so.

’ complex either
has a dominant
irther undefstan-
»tion of the beha-
)le system. The

at mechanism's
(concerning both
nining ﬁhe sys-

5 proof that the

: to forces. A
astibular system
1t great difficul~
2served.
1dy attiﬁude du~-
tibular system

In such

system of his

2 same way as a

healthy man

tes them in some
ton activated by
a healthy person
system behaviour

and the contact
2) . Then, it is
forces by the-
ting area, the

@ pressure dia-

e always computed.
out of the suppor-
-support phase it

19

can.be anywhere inside the dashed area (Fig. 1.3). Within these areas
the ZMP ‘can move im accordance with different laws, continuously or
not, depending on which gait ‘type 1s performed.

ZMp

Fig. 1.2. Longitudinal distribution Fig. 1.3.
of pressure on the foot

and ZMP position

Area of allowable
positions of ZMP in
double~support phase

-.The ba51c idea used in artificial synergy synthesis is that the law of
=h change of vertical reactlon and friction forces (i.e., total reaction
‘.force) under the foot is known in advance, or prescribed. The prescri-
bed part of dynamic characterlstlcs which, in a dynamic sense,addlt;o—
.nally restricts the system, is named "dynamic connections". Thus, if a
" certain point represents the ZMP, and if the ground reaction forces ﬁv

are reduced to it, then the moment M should be equal to zero. The vec-
tor M has always a horizontal direction and, hence, two dynamic condi-
" tions have to be satisfied: the prOJectlon of the moment on two mutu-

aliy orthogonal axes X and Y in the horizontal plane should be equal
to zero.;

My = 0, M, =0 ‘ (1.3.9)

As for the friction forces, it can be stated that their moment with
respect to a vertiecal axis V is equal to zero:

My : ) . S (1.3.10) -

.‘The axis V can be'chosen to be in any place, but if it passes through
the ZMP, then the axes X, Y, and V constitute an orthogonal coordinate
frame, and V will be denoted by 7. o

‘The external forces acting on the locomotlon system are the grav1ty,
~friction, and ground .reaction forces. Tet reduce the inértial forces
and moments of inertial forces of all links to the ZMP and denote
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them by F and MF’ respectively. The system equilibrium conditions can
be derived using D'Alambert's principle, and conditions (1.3.9) can be
rewritten as

=0, (M.+M_).8

> o >
(Mg +Mg) - ctp) ey

¢ F! "%x =0 » . S (1.3.11)

where ﬁG is the total moment of gravity forces with respect to ZMP,

while gx and ZY are unit vectors of X and Y axes of the absolute coor- @
dinate frame. Since the gravity forces are parallel to the V axis, the
third equation of dynamic connections (1.3.10) becomes
> - -> ' ‘ e
(M +px¥) .8, = 0 ' o | (1.3.12) - 1

where 3 is a vector from the ZMP to the piercing point of the axis V

through the ground surface; EV is a unit vector of axis V.

Let us adopt the relative angles between two links to be the generali?
zed coordinates and denote them by qi. The relative (&ppernal) angles
do not depend on the choice of the absolute coordinate/frame,?aﬁa they
are very convenient for defining the mechanism's position. Additional-
ly, let suppose the mechanism foot'rgsts completely on the ground, so
the angle between them is zero, qoso. The inertial force F and moment
M., .in a general case, can be represented in linear form of the gene-

' .
ralized accelerations, and in quadratic form of generalized velocities

n n n .
o1 v .k .i.
POs ] aligte ) byeated, ket,2,3
i=1 i=1 j=1: _ .
) (1.3.13)
n n n .
k < Kk o.i « ko ediej
Moo= E c.-q + z dy.-q g, k=1'213
Foogst i=1 j=1
. - k k .k . : )
where the coefficients a?, bij"ci’ dij (k=1,2,3; 1;1,...,n; j=1,...,m)

and M§ (k=1,2,3)
denotes projections of vectors F and ﬁF' By introdﬁcing thesSe expres-
sions into (1.3.11) and (1.3.12), one obtains [1, 3]: -

are the functions of generalized coordinates, and F

g, v delate T Talatd =0
G Xyt i=1 3=1 :

n . n n .

X © 2 i N - 22 +is3
M.te, + )ci«@ + ) ) di..qaql =0
€Y gt i=1 j=1 *J

1
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(1.3.14)

.where the supérscripts X, Y denote ‘the components in the direction of

the corresbonding axis.

If the locomotlon system has only three d.o.f., the trajectories for
‘all angles q can be computed from (1.3.14).

If, however, the mechanism is designed to perform a gait, it usually
possesses more than three d:o‘f. Because (1.3.14) does not‘contain the
information about the gait type, the trajectories for the rest (n-3)
coordinates should be prescribed in such a way to ensure the desired
legs' trajectories. It is the easiest and most suitable way to adopt

. this information from measurements. of human gait parameters. In this
manner, the problem of legs' trajectories synthesis .is avoided, since
the criteria which have to be satisfied in the synthesis of a desired
galt type are unknown. The trajectories for this part of the system
t#ajeetories are prescribed, while thé dynamics of the rest.bf the sy=-
stem'is determined in such a way to preserve the overall mechanism .
stability. T '
fic reduction of the system order which is neither simplification nor
linearizatlon of the mechanism, offers the possibility of realization
“of any de51red galt type, which is of special interest in designing
“exoskeletons for Pehabilitation of disabled persons.

This method, apart from the advantage of attaining a speci-

i

Now, the set of coordinates g~ can be diﬁided in two subsets: the first

one containing all coordinates whose motion is prescribed, . denoted as
qol, and the second subset.comprising all coordinates'whose motion is
to be defined using ‘the prescrlbed synergy method, denoted as le.

'Accordingly, the condition (1.3.14) becomes

n n n

! CEQXi + 11 dﬁ'éXiQXj + gk =0, k=1,2,3 (1.3.15)

. =, e PR iy |

i=1 i=1 j=1 S , . )
where cﬁ and dij' (k=1,2,3),afe the vector céefficients dependent on

(Xe) “wO

qo, and qx, whereas vector g (k=1,2,3) is a function of qo, a ., g9 4,
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In regard to the nature of legged motion of living organisms, certain
repeatability conditions reflecting the feature of the gait in a sta-
tionafy regime, have to be added to equations (1.3.15). Since the gait
is symmetric, the repeatability conditions cén be written in the form

ato) = x* G,  dto = gt

where the sign depends on the physical nature of the appropriate coor-
dinates and their derivatives; (%) is the duration of the one half-step
period. As the motion of the prescribed part of the mechanism has been
already defined (the repeatability conditions are implicitely satis-
fied), only for the rest of the mechanism, i.e., for the part of the me-
chanism whose motion has to be determined, the repeatability conditions

xi( xi,T &xi(O) - -x1(

0 = (G, . G ‘ (1.3.16)

q
are to be added to. the original set of equatlons descrlbing the mecha-
nism motion. ) N
. T Ny
System (1.3.15), together with conditions (1.3.16), enables oﬁe.éo
obtain the necessary trajectories of the coordinates QXi, i.e., to
carry out the compensation synergy synthesis. Accordingly, the synergy
synthesis for qu coordinates is reduced to the solving of system
(1.3.15) with conditions (1.,3.16). For this purpose, various iterative

methods for solving the boundary value problem can be applied [1, 31].

It has to be emphasized that though the equations of dynamic relations
(1.3.15) have to be written only for three coordinates qu,thedynamic
properties of all of the adopted anthropomorphic models are taken into
account. This is a consequénce of the fact that the coefficients in

(1.3.15) depend on the motion of the whole mechanism. So, the mathema-

tical model includes the inertial terms of links qu on which the pre-
scribed synergy is imposed. In this way; the dynamics.of the adopted

synergy is also considered.

After the synergy synthesis is completed, the driving torqués, which
have to force the system to follow nominal trajectories, have to be
computed. For this reason, the conditlons of kinetostatic equilibrium
around all joints' axes should be wrltten and then the driving torques
computed.

Dynamic connections can .be set not only for the point where the ground

reaction force a
mechanism. A goo
suppose each arr
no any specific

ticipation of a; |
tuator-at the sh
behaviour of the
tically means th f
shoulder joints,
with raspéct to

(1.3:14), the ad |
motion, the.repe.;
tpo. That means - |
period as for th |
In such a case, :
theré are possib. |
vectors in (1.3.

Therefore, the p»
ture, belongs to
system - motion

locomotion thus (;
additional'explaxt

In spite of the if
prescribed (in tr
tories), the driy |
tions are the fur |
and ‘they are acti

-of “that, it is nc

joints of prescri |
nergy synthesis a
dynamical indefir

The solution has
where the ground
a coordinate fram
equilibrium are f

" trajectories are

vance, the sum of
sive joints (shou




ganisms,; certain
e gait in a sta--
) . Since the gait
tten in the ferm

appropriate coor-
the one half-step
echéﬁism-has been
licitely satis-
he part of the me~
lity conditions

(1.3.16)

ribing the mecha=-

nables one to
qu, i.e., to
ngly, the Synergy
ng of system
various iterative

applied [1, 31].

dynamic relations
s qxi’ the dynamic
ls are taken into
sefficients in

So, the mathema-
on which the pre-
of the adopted

torques, which
as, ‘have to be
atic equilibrium
8 driving'torques

where the ground

23

eéctiOn force acts on the system, but also for other joints of the
mechanism. A good example is the arms motion in a walking process. Let us
suppose each arm is approximated by one heavy link. Then, if there is
no- any spec1f1c task to be fulfllled (as, for example, the active par-
tmcipation of ‘arms in the artificial gait) and if there is no any ac-
tuator at the shoulder joint, but with viscous friction involved, the
:behaviour of the arms is similar to that of free pendulums. It prac-
tlcally means that the equilibrium conditions ‘can be written for the
shoulder 301nts. The sum of moments of.all gravity and inertial forces
: with respect to the shoulders joints axes, forms, along with relations
'(1 3. 14), the additional relations of dynamlc connections. During the
Tmotlon, the. repeatability COndlthﬂS (1.3.16) hdve to be satisfied,
“too. That means the arms behaviour has to be periodic with the same
ﬂperlod as for the other mechanlsm links, namely,. the one-step period 7.
In such a case, thé set q will contain as many q xi coordinates as
3there are possible conditions of dynamic connections. The matrices and
'vectors ig (1.3.15): will be of the corresponding order.

»Therefore, the problem of artificial-locomotion synthe51s, by its na-
‘ture, belongs to combined type of problem, as, for the one part of the
isystem - motion is known, and for the rest of it - forces. The biped

;lbcomotion thus defined has certain specificities which deserve some
additional explanations. :

In splte of the fact that the mctlon of the one. part of the system is
;prescribed (in the ‘case we are dealing with, this is the legs® trajec-~
-torles), “the drxvlng torgues remain unknown Hence, -the- dynamic reac-
tions are the function of both the prescribed and compensating synergy,
and they are acting on the system as unknown external forces. Because
-of that, it is not possible to compute ‘the driving torques, even at the
joints of prescribed trajectories. This is the reason why in the sy-
nergy synthesis a speca.al attention has to be paid to solving these
dynamical lndeflnitness. :

The solution has been obtained by prescribing the position of the point
‘where the ground reaction force acts on the mechanism (ZMP), to which
a coordinate frame has been. attached. Then, the equations.of dynamic
equilibrium are formed with respect to the ZMP. That means, if the legs
trajectories are prescribed and the position of ZMP -is chosen in ad-
vance, the sum of all moments with respect to the ZMP and-axes of pas~
. slve joints (shoulder joint) are equal to zero. Then, the system of
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differential equatlons w1th respect to the unknown part of synergy
(1.3.7) becomes

X

. = - 1 v".o ' 2 v . .
T% = Aoy Ao T, (Bla"l+Clg ql+G)

and, the corresponding driving torqueS‘can be computed from (1.3.1).

In thisvcase; the.unknown synergy describee not only the motion of the
compensating links for maintenance of the equilibrium with respect to
the supporting point, or used for establishing the gait repeatability,
but also the free motion .of passive links.

1.3.2. Double-support phase

We shall consider now the double-support phase which is characterized
by simultaneous contact of both mechanism's feet with the ground. In
this case the kinematic chain playing the role of legs ls closed, i.e.,
the unknown reaction forces to be determined act on 1ts both ‘enfls. We
shall describe only an approximate procedure described in monograph
[1], though some other methods have been reported in the literature

[5, 34].

The procedure for synergy synthesis is in the most part analogous to
that for a .single-support phase. Let the position of axis V be selec~-
ted within the dashed area in Fig. 1.4, Then, by writing the equilibri-

um equations with respect to three. orthogonal axes (two horizontal and

one vertical) passing through -the ZMP, and by setting the sum of all
moments of external forces to zero, the compensating movements for the

. corresponding paxt of the body can be computed.

The next problem is how to chose the position of the axis V with res-

pect to the zMP, The'information on ZMP and axis V is insufficient for

computation of the driving torques. For this reason, it is necessary
to provide some additional relations concernlng the ground reaction
force. These relations are concerned with the characteristics of the

‘friction between the feet and the ground ‘surface. The total reaction

under one foot can be expressed as a sum of three reaction forces and
moment components in the direction of coordinate axes. The components
My and MY can be equal to zero since the dlagram of  the wvertical
fo;ces is of the same sign. The third component, MV’ should ‘also be
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'equal to zero, according to the following considerations. Generally

speaking, the friction forces can produce moments, but in the synergy
synthesls the moment MV should also be equal to zero. As a consequence,

_if moments of friction forces are generated they should be of the op-
‘posite sign under each foot However, in such a case these moments do

not affect the system motion but only load additionally the legs drives

and joints. Becatise of this, it is reasonable to synthesize the gait in

such a way- as to reduce each of these moments to zero. Consequently, it

;vcan be assumed that total moments of reaction forces under each foot
" are eqgual to zero,

M =ﬁb=o : (1.3.17)

'where the subscripts a'and b denote the left and right foot, respecti-

vely.

Now we shall discuss in more detail the total reaction force R. This

force has to fulfil certain relations between its horizontal and ver-

tical component. Charactéristics of the friction between the foot and

"the ground can be represented by a friction cone (Fig. 1.4). If the
’total ground reaction force is within the cone of angle 2y, its hori-

zontal component, opposing the sliding (i.e., the friction force) will
be of sufficient intensity to prevent an
unwanted horizontal motion of the suppor-
ting foot over the ground surface. This
can be expressed as

s e

IR Ry
AN >
IR, |
‘Fig. 1.4. Friction cone where @ 'is the friction coefficient of the
surfaces in contact. Thus ‘we come to an

< tgy = (1.3.18)

" important conclusion that it is reasonable to distribute the horizontal
‘components of ground reactions per foot proportionally to. the normal

pressure. The vertical components are inversely proportional to the
distances between the ZMP and corresponding foot. So,

Bl

- b ' (1.3.19)
'|§Vb|., *a

Then, from (1.3.18), the relation [1, 3]:
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%al 2o - C(1.3.20)
E: , | |

bl e

holds for the horizontal components, where T and T are the friction
forces under the corresponding foot (Fig. 1. 5). On the basis of simi=-
larlty of the triangles AOAD and AOBC, it can be concluded that rela~
tion (1.3.20) does not depend on the direction of the force T (i.e,,
the diétances 2; End lg) but only
on the distances between the feet,
za and Ly Thus we come to an im-
portant conclusion that, in order
to have the. friction forces divi-
ded in pﬁoportign to the vertical
pressures, a necessary and suf-
ficient condition is that the axis
V passes through thé ZMP. Then, for
the synergy.. synthesiijzdouble sup-
port phase the followlng vector
equation holds

it~

. (?ix(Ei+§i)+ﬁi) =0 (1.3.21)
Fig. 1.5. Determination of total =1 -

ftiction force where ;i is a radius. vector fromthe
ZMP to the gravity centre of the
i-th link; Fi and ﬁi'are the inertial force and the corresponding- mo-
ment of the i-th link reduced to its centre of gravity.

When the synthesis of compensating laws of motion is completed, it is
possible to determine total horizontal and vertical reactions

n

- ->
i21(Fix'ex+Fiy'ey

>

T = - ) (1.3.22)

+Gy)

where F is the progectlon of Fi to the vertical axls and F., ix and FlY
to axes X and Y, respectlvely. Here; the axis 2 corresponds to a vertl-
cal axis (previously denoted by V) Wthh passes through the ZMP The
axes X, Y, and Z with unit vectors 1, j and b, respectlvely,constltute
the absolute orthogonal coordinate frame. Furthermore the relations
Ted o+
relations

b and R = ﬁa + ﬁb are obvious, and they, together with the
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->
Eod o+ BB = 0
(1.3.23)
> > > >
LaxRa + ,beRb 0
extend the p0551bllity of deflnlng “the vertical reactlons R and ﬁ

as well as the friction forces. T and Tb' The L
" .from the ZMP (denoted by 0) to the centres of-the corresponding suppor-

ting surfaces A and B, respectively.

and zb are vectors

When the reactions are defined accordiné to (1.3.22) and (1.3.23), it
‘1s necessary to check out whether ‘the inequality (1.3.18) still holds.
If not, another ZMP ought to.be selected and the synergy synthesis

" performed again as desctibed above. When, howeéver, (1.3.18) is satis=-
vfled then the determination of driving torques at mechanism's joints
can be worked out. For this purpose, the closed kinematic chain of legs
should be broken at one end, and the corresponding reactions (for
example, ﬁa and fg) applied. Such a situation corresponds to.the case
when all kinematic chains are open, and driving torques can be compu-
ted in the way already described.
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