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Abstract

The focus of this paper is the problem of foot rotation in biped robots during the single support

phase. Foot rotation is an indication of postural instability which should be carefully treated in a

dynamically stable walk and avoided altogether in a statically stable walk.

We introduce the foot rotation indicator (FRI) point which is a point on the foot/ground contact

surface where the net ground reaction force would have to act to keep the foot stationary. To

ensure no foot rotation, the FRI point must remain within the convex hull of the foot support area.

In contrast with the ground projection of the center of mass (GCoM), which is a static criterion,

the FRI point incorporates robot dynamics. As opposed to the center of pressure (CoP) { better

known as the zero moment point (ZMP) in the robotics literature { which may not leave the support

area, the FRI point may. In fact, the position of the FRI point outside the footprint indicates the

direction of the impending rotation and the magnitude of rotational moment acting on the foot.

Due to these important properties the FRI point helps not only to monitor the state of postural

stability of a biped robot during the entire gait cycle, but indicates the severity of instability of the

gait as well. In response to a recent need the paper also resolves the misconceptions surrounding

the CoP/ZMP equivalence.

Keywords: biped robot, foot rotation indicator (FRI) point, zero moment point (ZMP), foot
rotation, postural stability, stability margin

1 Motivation

The problem of gait planning for biped robots is fundamentally di�erent from the path planning
for traditional �xed-base manipulator arms as succinctly pointed out in [20]. A biped robot may be
viewed as a ballistic mechanism which intermittently interacts with its environment { the ground {
through its feet. The foot/ground \joint" is unilateral since attractive forces are not present, and
underactuated since control inputs are absent. Formally speaking, unilaterality and underactuation
are the inherent characteristics of legged locomotion and, at the same time, are the root causes

�On leave from: INRIA Rhône-Alpes, 38330 Montbonnot Saint Martin, France.
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behind their postural instability and fall. A loss of postural stability may have potentially serious
consequences and this calls for its thorough analysis in order to better predict and eliminate the
possibility of fall.

Postural balance and stance foot equilibrium are profoundly inter-twined. A biped robot gait
is said to be statically stable [14] and a human posture is said to be balanced[13] if the gravity line
from its center of mass (GCoM)1 falls within the convex hull of the foot support area (henceforth
called the support polygon). It is worth noting that a human being can almost always regain the
upright posture as long as the feet are securely posed on the ground. The exit of GCoM from
the support polygon is equivalent to the presence of an uncompensated moment on the foot which
causes it to rotate about a point on the polygon boundary.

Rotational equilibrium of the foot is therefore an important criterion for the evaluation and
control of gait and postural stability in legged robots. Indeed, foot rotation has been noted to
reect a loss of balance and an eventual fall in monopods[10] and bipeds[1] { two classes of legged
robots most prone to instabilities. The exit of GCoM from the support polygon is considered to be
the determining factor of stability in the study of human posture as well[13]. Among the several
ways in which the static equilibrium of the robot foot may be disturbed { such as pure sliding, pure
rotation about a boundary point, composite sliding and rotation, and even a complete detachment
{ this paper addresses the initiation of pure foot rotation.

Although the position of the GCoM is su�cient to determine the occurrence of foot rotation
in a stationary robot, it is not so for a robot in motion. Instead it is the location of the foot

rotation indicator (FRI) point, which we introduce in this paper, that indicates the existence of
an unbalanced torque on the foot. The FRI point is a point on the foot/ground surface, within or
outside the support polygon, where the net ground reaction force would have to act to keep the
foot stationary. Farther away is this point from the support boundary, larger is the unbalanced
moment, and greater is the instability. To ensure no foot rotation, the FRI point must remain
within the support polygon, regardless of the GCoM position. The FRI point is a dynamics-based
criterion, and reduces to the GCoM position for a stationary robot.

We emphasize that the FRI point is distinctly di�erent from the center of pressure CoP { better
known as the zero moment point (ZMP) in the robotics literature[1, 8, 9, 12, 14, 15, 16, 20] { and
frequently used in gait planning for biped robots. CoP is a point on the foot/ground surface where
the net ground reaction force actually acts. Regardless of the state of stability of the robot, the
CoP may never leave the support polygon, whereas the FRI point does so whenever there is an
unbalanced torque on the foot. In fact, the distance of the FRI point from the support polygon is
an indication of the severity of this unbalanced torque and may be exploited during the planning
stage.

This paper makes two main contributions. The �rst is the introduction of the FRI point which
may be employed as a useful tool in gait planning in biped and other legged robots, as well as for the
postural stability assessment in the human. The second contribution is in response to our discussion
with other researchers regarding the misconceptions surrounding the CoP/ZMP equivalence. We
review the basics of both the concepts and show that they are identical.

1.1 Some comments about this paper

� Although our work is inspired by the analogy between biped robot gait and human loco-
motion, we do not explicitly investigate human locomotion in this paper. The discussion
refers uniquely to robots with the implicit understanding that the developed concepts may
be extended to the study of human locomotion.

� The FRI point concept may be applied to other multi-legged robots. We limit ourselves
to biped robots since postural stability and fall related issues are especially important to
statically unstable robots.

� Our main focus is the single support stage of the locomotion cycle during which only one foot,
called the support foot, is in contact with the ground while the other leg swings forward. In

1GCoM := Ground projection of the Center of Mass.
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typical human gait, single support stage occupies about 80% of the entire gait cycle[24].

� We address the mechanics of foot rotation and do not concern ourselves with the formulation
or implementation of any control law. However, since the real interest in this area results
from control problems, a brief description of the control issues is included for completeness
(in Section 5).

� Whenever context permits, we loosely use force to mean force/torque.

2 FRI point of a general 3D biped robot

In order to formally introduce the FRI point, we �rst treat the entire biped robot { a general n-
segment extended rigid-body kinematic chain (sketch shown in Fig. 1) { as a system and determine
its response to external force/torque. We may employ Newton or d'Alembert's principle for this
purpose. The external forces acting on the robot are the resultant ground reaction force/torque,
R and M , acting at the CoP (denoted by P , see Fig. 1, right), and the gravity. The equation for
rotational dynamic equilibrium2 is obtained by noting that the sum of the external moments on
the robot, computed either at its GCoM or at any stationary reference point is equal to the sum of
the rates of change of angular momentum of the individual segments about the same point. Taking
moments at the origin O, we have

M +OP �R+
X

OGi �mig =
X

_HGi +
X

OGi �miai (1)

where mi is the mass, Gi is the CoM location, ai is the CoM linear acceleration, and HGi is the
angular momentum about CoM, of the ith segment. M is the frictional ground reaction moment
(tangential).

An important aspect of our approach is to treat the stance foot as the focus of attention of
our analysis. Indeed, as the only robot segment interacting with the ground, the stance foot is a
\special" segment subjected to joint forces, gravity forces and the ground reaction forces. Viewing
from the stance foot, the dynamics of the rest of the robot may be completely represented by
the ankle force/torque �R1 and �� 1 (negative signs for convention). Fig. 1, right arti�cially
disconnects the support foot from the shank to clearly show the forces in action at that joint. The
dynamic equilibrium equation of the foot (segment#1) is:

M +OP �R+OG1 �m1g � � 1 �OO1 �R1 = _HG1 +OG1 �m1a1 (2)

The equations for static equilibrium of the foot are obtained by setting the dynamic terms
(RHS) in Eq. 2 to zero:

M +OP �R+OG1 �m1g � � 1 �OO1 �R1 = 0 (3)

Recall that to derive Eq. 3 we could compute the moments at any other stationary reference
point. Out of these the CoP represents a special point where Eq. 3 reduces to a simpler form

M +PG1 �m1g � � 1 � PO1 �R1 = 0: (4)

Considering only the tangential (XY ) vector components of Eq. 4, we may write�
� 1 + PO1 �R1 �PG1 �m1g

�
t

= 0 (5)

where the subscript t implies the tangential components. SinceM is tangential to the foot/ground
surface its vector direction is normal to that surface and doesn not contribute to this equation3.

In the presence of an unbalanced torque on the foot Eq. 5 is not satis�ed for any point within
the support polygon. One may, however, still �nd a point F outside the support boundary which
satis�es Eq. 4, i.e., �

� 1 + FO1 �R1 � FG1 �m1g

�
t

= 0: (6)

2We deal with rotational equilibrium only and do not discuss translational equilibrium (sliding), assuming that the

foot/ground friction is su�ciently large to prevent it.
3We ignore foot rotation about the ground normal as it does not contribute to a balance loss.
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Figure 1: The sketch of a 3D extended rigid body biped robot (left) and a view with its support foot arti�cially

disconnected from the shank to show the intervening forces (right). The CoP, GCoM and the FRI point are denoted by

P , C, and F , respectively.

The point F is called the FRI point and de�ned as,

The foot rotation indicator (FRI) point is a point on the foot/ground contact surface,

within or outside the convex hull of the foot support area, at which the resultant moment

of the force/torque impressed on the foot is normal to the surface.

By impressed force/torque, we mean the force and torque at the ankle joint, other external
forces, plus the weight of the foot, and not the ground reaction forces. Following [2] we may
identify the impressed forces as the acting forces in contrast to the reaction forces from the ground
which are the constrain forces. An intuitive understanding of the FRI point is obtained by setting
� 1 = 0, m1 = 0 in Eq. 6. In this case F is simply the point on the ground where the line of action
of R1 penetrates, as shown in Fig. 2. The case of unactuated ankle joint was considered in [10] to
analyze the hoof rotation in a monopod.

It is important to note that the location of the ankle joint and the geometry of the support
polygon boundary are the only important features of the foot which are relevant in our discussion.
The actual physical shape of the foot is not important. See Fig. 3 for a graphical illustration of
this fact.

Explicit expressions for the coordinates of F , OF : (OFx; OFy; OFz = 0) are obtained by com-
puting the dynamics of the robot minus the foot at F ,

� 1 + FO1 �R1 +

nX
i=2

FGi �mig =

nX
i=2

_HGi +

nX
i=2

FGi �miai (7)
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Figure 2: Condition for foot rotation when � 1 = 0. The �gure sketches di�erent lines of action of the force R1 applied

on the robot foot by the rest of the robot at the ankle joint O1. If the line of action of a force intersects the ground beyond

the footprint, there is a net moment applied on the foot and the foot rotates. Otherwise, the ankle joint forces may

be supported by the foot/ground interaction forces and the foot maintains static equilibrium in its stationary upright

con�guration.
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Figure 3: The locations of key points { the ankle joint location O1 and the support polygon boundary (A and B) {

and not its overall geometry are relevant for the behavior of the foot. The three examples of the robot foot shown in the

�gure have identical behavior although their geometries are very di�erent.

Using Eq. 6 and considering only the tangential components,

�
FG1 �m1g +

nX
i=2

FGi �mi(g � ai)

�
t

=

� nX
i=2

_HGi

�
t

: (8)

Noting FGi = FO +OGi and OF = �FO, Eq. 8 may be rewritten as

� nX
i=2

OF �mi(ai � g)�OF �m1g

�
t

=

�
�OG1 �m1g +

nX
i=2

_HGi +

nX
i=2

OGi �mi(ai � g)

�
t

: (9)

Carrying out the operation, we may �nally obtain:

OFx =
m1OG1yg +

Pn

i=2
miOGiy(aiz + g)�

Pn

i=2
miOGizaiy +

Pn

i=2
_HGix

m1g +
Pn

i=2mi(aiz + g)
(10)

OFy =
m1OG1xg +

Pn

i=2
miOGix(aiz + g)�

Pn

i=2
miOGizaix �

Pn

i=2
_HGiy

m1g +
Pn

i=2
mi(aiz + g)

(11)

2.1 Properties of FRI point

Some useful properties of the FRI point which may be exploited in gait planning are listed below:

1. The FRI point indicates the occurrence of foot rotation as already described.
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2. The location of the FRI point indicates the magnitude of the unbalanced moment on the foot.
The total moment M I

A
due to the impressed forces about a point A on the support polygon

boundary (Fig. 1, right) is:

M
I
A = AF � (m1g �R1) (12)

which is proportional to the distance between A and F . If F is situated inside the support
polygonM I

A
is counter-acted by the moment due toR and is precisely compensated, see Fig. 4,

left, for a planar example. Otherwise, M I
A
is the uncompensated moment which causes the

foot to rotate (Fig. 4, right).

3. The FRI point indicates the direction of foot rotation. This we derive from Eq.12 assuming
that m1g �R1 is directed downwards.

A
B

B

(m1g �R1)n(m1g �R1)n

Rn

Rn

P = F

P = A

F

Figure 4: The magnitude of the moment experienced by a point on the support boundary is linearly proportional to the

distance of this point from the FRI point. The magnitudes of the moments at di�erent points are shown by the length

of the arrows. Clockwise (i.e., negative) moments are shown by upward pointed arrows and the counterclockwise (i.e.,

positive) moments are shown by downward pointed arrows. In the left �gure the moments are precisely compensated

whereas in the right they are not. Subscript \n" denotes the normal component of a force.

4. The FRI point indicates the stability margin of the robot. The stability margin of a robot
against foot rotation may be quanti�ed by the minimum distance of the support polygon
boundary from the current location of the FRI point within the footprint. Conversely, when
the FRI point is outside the footprint, this minimum distance is a measure of instability of
the robot. An imminent foot rotation will be indicated by a motion of the FRI point towards
the support polygon boundary.

3 CoP (ZMP), GCoM and FRI point compared

In this section we compare and contrast the three quantities, the CoP, the GCoM and the FRI
point. CoP and GCoM are used both in the robotics literature as well as in biomechanics and are
often a source of misconception and confusion. We will pay particular attention to the concept of
ZMP and show that it is identical to CoP. We show that the FRI point better reects postural
instability in a dynamic situation compared to the CoP and the GCoM.

3.1 CoP reviewed

Although the term CoP was most likely originated in the �eld of uid mechanics, it is frequently
used in the study of gait and postural balance. The CoP is de�ned as the point on the ground
where the resultant of the ground reaction force acts.

As shown in Fig. 5, two types of interaction forces act on the foot at the foot/ground interface.
They are the normal forces fni, always directed upwards (Fig. 5, left) and the frictional tangential
forces f ti (Fig. 5, middle). CoP may be de�ned as the point P where the resultant Rn =

P
fni

6
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Figure 5: Analysis of CoP. In the foot/ground interface we have the normal forces (left) and the frictional tangential

forces (middle). CoP is the point (P ) where the resultant Rn of the normal forces act. At CoP, the tangential forces

may be represented by a resultant force Rt and a momentM . Ground reaction force is R = Rn +Rt.

acts. With respect to a coordinate origin O, OP =

P
qifniP
fni

, where qi is the vector to the point of

action of force f i and fi is the magnitude of f i.
The unilaterality of the foot/ground constraint is a key feature of legged locomotion. This

means that fni � 0 which translates to the fact that P must lie within the support polygon. The
resultant of the tangential forces may be represented at P by a force Rt =

P
f ti and a moment

M =
P
ri � f ti where ri is the vector from P to the point of application of

P
f ti.

The complete picture is shown in Fig. 5, right. The stance foot of the biped robot is subjected
to a resultant ground reaction force R = Rn +Rt and a ground reaction moment M . An analysis
with a continuous distribution of ground reaction force was performed earlier[3, 4]. We point out
that contrary to what appeared in [14] R, and not Rn, is the total ground reaction force. Please
note that CoP is identical to what has been termed as the \center of the actual ground reaction
force" (C-ATGRF) in a recent paper[9].

3.2 Zero moment point (ZMP)

The concept of ZMP which we demonstrate to be identical to the CoP is known to have originally
been introduced in 1969[22]. Since then it has been frequently used in biped robot control [1,
8, 9, 12, 14, 15, 16, 20] as a criterion of postural stability. Reference is often made to the ZMP

condition[1], or the ZMP stability criterion[12], which states that the ZMP of a biped robot must be
constrained within the convex hull of the foot support area to ensure the stability of the foot/ground
contact[1], walk stability without falling down[1], dynamic stability of locomotion[15, 14], physical
admissibility and realizability of gait[14]. Unfortunately, these terminologies are not all equivalent,
and the physical implications of some of them are not entirely clear.

A similar problem is encountered with the di�erent de�nitions of ZMP which, perhaps due
to lack of rigor, are not always clearly understandable and has created confusion in the research
community. Discussions with other researchers have convinced us that in view of the signi�cantly
increased interest in biped robot research in recent times, it is necessary to review and clarify the
physics behind the concept of ZMP and remove the existing misconceptions. Instead of attempting
to rede�ne the ZMP, we reproduce some of the de�nitions which are correct (being all equivalent)
and easy to understand:

7
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Def 1 Hemami and Golliday 1977: ZMP is the point where the vertical reaction force inter-

sects the ground[8].

Def 2 Takanishi et al. 1985: ZMP is the point on the ground where the total moment

generated due to gravity and inertia equals to zero[16].

Def 3 Arakawa and Fukuda 1997: ZMP is the point on the oor at which the moment

T : (Tx; Ty; Tz) generated by the reaction force and the reaction torque satis�es Tx = 0,

and Ty = 0[1].

Def 4 Hirai et al. 1998: The point on the ground at which the moment of the total inertia

force (which the authors previously de�ne as the combination of inertia force and gravity

force) becomes zero is called the ZMP[9].

The term zero moment point is a misnomer since in general only two of the three moment
components are zero[3]. This raises question about the necessity of introducing a new name for an
already well-known concept, the CoP.

3.3 CoP=ZMP

Defs. 1, 3 of ZMP immediately correspond to the de�nition of CoP as described in Section 3.1. It
is also possible to show that CoP is the point where the resultant moment generated by the inertia
and gravity forces is tangential to the surface (Defs. 2 and 4). To prove this let us �rst assume
that this latter point, which we call D is distinct from the CoP. The dynamic equilibrium equation
computed at D takes the form:

M +DP �R+
X

DGi �mig =
X

_HGi +
X

DGi �miai (13)

whereas, by de�nition D satis�es:
�X

_HGi +
X

DGi �mi(ai � g)

�
t

= 0 (14)

Comparing Eqs. 13 and 14, (DP �R)t = 0. However, since R 6= 0 and DP , R in general, this
is possible only if DP = 0 or the points D and P are coincident. Other approaches have led to
identical conclusion[3, 4].

By rewriting Eq. 13 as
�
DP �R

�
t

=

�X
_HGi +

X
DGi �mi(ai � g)

�
t

(15)

gives us a clearer picture of the equivalence of CoP and ZMP. Whereas the de�nition of CoP states
LHS = 0, ZMP is traditionally computed from the expression RHS = 0.

Since CoP=ZMP, ZMP may never leave the support polygon, contrary to what was incorrectly
implied in [12, 14]. Also, ZMP has no inherent relationship with a dynamically stable gait as has
been previously stated[12, 15].

3.4 FRI point and CoP

In order to relate the FRI point and the CoP let us rewrite Eq. 2, this time computing the moments
at F :

M + FP �R+ FG1 �m1g � � 1 � FO1 �R1 = _HG1 + FG1 �m1a1 (16)

By substituting Eq. 6 in Eq. 16 we obtain:
�
FP �R

�
t

=

�
_HG1 + FG1 �m1a1

�
t

(17)

8
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The FRI point and the CoP are coincident if FP = 0, i.e., if ( _HG1 + FG1 �m1a1)t = 0. This
is possible if any one of the following conditions is satis�ed: 1) a1 = 0 and ��1 = 0 i.e., the foot is
at rest or has uniform linear and angular velocities, 2) I1 = 0 and m1 = 0, i.e., the foot has zero
mass and inertia, 3) FG1 k m1a1 and I1 = 0.

It may be shown that for an idealized rigid foot the CoP is situated at a boundary point unless
the foot is in stable equilibrium. Since the position of CoP cannot distinguish between the marginal
state of static equilibrium and a complete loss of equilibrium of the foot (in both cases it is situated
at the support boundary), its utility in gait planning is limited. FRI point, on the other hand, may
exit the physical boundary of the support polygon and it does so whenever the foot is subjected to
a net rotational moment.

3.5 CoP and GCoM

GCoM, represented by C in Fig. 1 satis�es,

CG�
X

mig = 0 (18)

where G is the center of mass of the entire robot and
P
mi = M is the total robot mass. Noting

that CG
P
mi =

P
CGimi, and CGi = CP + PGi we can rewrite Eq. 18 as:

CP �
X

mig +
X

PGi �mig = 0 (19)

Substituting in Eq. 1 we get

M �CP �
X

mig =
X

_HGi +
X

PGi �miai (20)

From above, P and C coincide if
�P

_HGi +
P
PGi �miai

�
t
= 0 which is possible if the robot

is stationary or has uniform linear and angular velocities in all the joints.

4 Simple examples

The objective of this section is to elucidate the idea behind the FRI point by means of four simple
examples, depicted in Figs. 6 and 7. The examples are based on an idealized planar point mass
model of the shank (an inverted pendulum) connected through an \ankle" joint to a triangular
foot.

Example 1 We consider an unactuated ankle joint, � 1 = 0; _�1 6= 0; ��1 6= 0, as shown in Fig. 6(a).

From Eq. 6 we have
�
FO1�R1

�
t
= 0, assuming m1 � 0. For a frictionless ankle joint R1 is always

directed towards O1G2. In other words, if we simply extend the line O1G2, the point where it
penetrates the ground is the position of the FRI point. Two extreme shank con�gurations beyond
which foot rotation occurs are shown as C1 and C2 in the �gure.

If we release the shank from a position slightly o� from its vertical con�guration it will fall
due to gravity while rotating around O1. If the shank rotates clockwise, the foot will remain stable
until the shank arrives at con�guration C2, at which point, the foot starts rotating counterclockwise
about A. On the other hand, for counterclockwise rotation of the shank, the foot starts rotating
clockwise around B once the shank crosses the con�guration C1. Although the opposite rotations
of the shank and the foot may appear counter-intuitive at �rst, it is better understood by recalling
that the forces acting on the two segments at the ankle joint O1 are equal and opposite.

Example 2 Next we consider an actuated system (Fig. 6(b)) with an ankle torque which pre-
cisely compensates for the gravitational moment but does not generate any shank motion, i.e.,
_�1 = 0and��1 = 0. In order to determine the position of the FRI point of this system we use
� 1 = �O1G2 �m2g and R1 = �m2g in Eq. 6. We get

P
FGi �mig = 0. This means that F

falls on the CG gravity line of the system. This property is valid not only for the foot/shank but
for any stationary mechanism[15].

9
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Figure 6: Simple planar examples. The ankle joint in Example 1 (left �gure) is unactuated. The FRI point is situated

on the line O1G1 (extrapolated) at its penetration point on the ground. In Example 2 (right �gure) the ankle torque is

just su�cient to counterbalance the gravity moment, and the system is stationary. In this case, as in all other stationary

mechanisms, the FRI point coincides with the GCoM and CoP.

Example 3 In the next example, shown in Fig. 7(left), the shank con�guration corresponds to
an GCoM position C outside the support polygon. The foot is however prevented from rotating by
the ankle torque (ml2���mgcos�). This should be taken into consideration while planning the gait
initiation of biped robots. It is noteworthy that in order to stop the robot from tipping over some
control laws accelerate forward the heavy robot body[9]. This generates a supplementary backward
inertia force { similar to this example { which shifts the FRI point F backward bringing it within
the support polygon. Since the foot is stationary, F = P .

Example 4 Finally in Fig. 7(right), the shank is vertically upright with its GCoM well within
the support line. Despite this, the foot starts to rotate due to the ankle torque ml2��. The FRI

point F is situated outside the support line at a horizontal distance OFy =
l��

g
(l + h) from O. The

CoP is at the extreme frontal point of the support polygon.

5 Control issues

Although the focus of this work is the dynamics of biped robots and the introduction of the FRI
point, it is the control of this point which is of importance to the robotics community. The control
issues faced are similar to those involving the control of the CoP (or ZMP) and we will briey
describe the available approaches. Readers interested in the actual implementation of the control
of CoP are directed to [21, 19, 16, 17, 15, 18, 11, 12, 23, 14, 5, 9]

Any control strategy for the FRI point needs to be aware of two important characteristics
of legged robots { underactuation and unilaterality. Additionally, the FRI point control falls in
the category of redundant control. The ground coordinates of the FRI point are the only two
independent parameters to be controlled whereas the control input is higher-dimensional and is
equal to the number actuated degrees of freedom of the robot. One therefore needs to impose extra
constraints or other task criteria for a successful redundancy resolution.

The condition that the FRI point (and the CoP) may not exit the support polygon during a static
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Figure 7: Two simple examples to compare and contrast the CoP (P ), GCoM (C), and FRI point (F ). At left the foot

is in static equilibrium since F is within the support line (although C is outside). P is coincident with F . At right, the

foot is starting to rotate since F is outside the support line (although C is inside). P is at the tip about which the foot

rotates.

walk is not by itself su�cient for a trajectory tracking implementation. One of the fundamental
di�culties is our inability to specify a reasonable trackable trajectory. For biped robots with human
dimensions one approach will be to track the CoP trajectory measured from human locomotion.
The connection between the desired features of a locomotion and the CoP trajectory also needs to
be established.

Peripherally related to the issue of control is the lack of an accepted de�nition of gait stability.
Although static stability has a precise meaning, dynamic stability of gait seems to simply imply that
it is not static stability and that the gait is inde�nitely sustained. We have discussed elsewhere[6]
the di�culties in appropriately de�ning the stability as applied to biped locomotion. One de�nition
of stability that reects the repetitive pattern of gait is that of the orbital stability[7]. Three other
de�nitions of biped robot stability are discussed in [21]. These are body stability, body path stability
and stationary gait stability. Body stability essentially implies that the body attitude angles remain
in a bounded region in the space spanned by the angles and returns to it after a perturbation. Body
path stability guarantees that the biped robot body returns to its original average velocity after
a perturbation. Finally, the stationary gait stability implies that the characteristic features of a
gait, represented by a parameter vector, remain within a volume in the parameter space. Whereas
these de�nitions are of obvious practical value, a mathematically more rigorous de�nition will be
welcome.

6 Conclusions and discussion

We introduced a new criterion called the FRI point that indicates the state of postural stability of
a biped robot. The FRI point is a point on the foot/ground surface, within or outside the support
polygon, where the net ground reaction force would have to act to keep the foot stationary. When
the entire robot is stationary and stable, the FRI point is situated within the support polygon,
and is coincident with GCoM and CoP. For stationary and unstable con�gurations, both GCoM
and FRI point, which are coincident, are outside the support polygon. The CoP is at the polygon
boundary.

In the presence of dynamics the GCoM and the FRI point are non-coincident. When the foot
is stable (implying that the robot possesses postural balance) the FRI point is situated within the
support polygon and is coincident with the CoP. An exit of the FRI point from the support polygon
signals postural instability. The CoP may never leave the support polygon. Farther away is the
FRI point from the support boundary, larger is the unbalanced moment on the foot and greater is
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the instability. The distance between the FRI point and the nearest point on the polygon boundary
is an useful indicator of the static stability margin of the foot.

Although postural stability of a biped robot (or a human being) is closely related to the static
stability of its foot, the relationship between foot stability and natural anthropomorphic bipedalism
is not at all clear. Even a simple observation of human locomotion will convince us that a signi�cant
part of the gait cycle involves foot rotation. One of our future goals is to measure the FRI point
trajectory for natural human locomotion.

We have investigated the fundamentals of the CoP and the ZMP in this paper. Since its
introduction about 30 years ago, ZMP has found frequent mention in the robotics literature but
unfortunately confusion about its physical nature has persisted. Some of this confusion is due to
a non-rigorous choice of terms in the existing de�nitions. This paper lists some of the de�nitions
that are clear and consistent. We have three major comments about this issue. First, we have
shown that CoP and ZMP are physically identical. Second, all three moment components are not
necessarily zero at ZMP. This raises question about the appropriateness of its name, especially in
view of the �rst point. Third, ZMP (being identical to CoP) may never leave the support polygon,
despite several indications to the contrary in the literature.
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