Locomotion Seminar

A functional perspective on legged locomotion

Srideep Musuvathy

Legged Locomotion

- Wasn't the wheel the greatest revolution in the history of invention?
- Most forms of 'higher' animals use legs for terrestrial locomotion
- Wheels need roads or tracks! That makes a lot of places inaccessible

Advantages of legs

- Isolated footholds
- active suspension
- consider examples of rugged terrain, mountains, swamps, loose gravel, sands, volcanic ash(!?!), etc

Structure, Dynamics and Balance

Geometric structure and kinematic issues

gaits

stable vs unstable structures

structure of legs and joints

Dynamics and control issues

forces and energy

Static vs. active balance

static and dynamic equilibrium

advantages of active balance

wider variety, higher speeds (ballistic motion), vertical accelerations

inverted pendulums, acrobot, underactuated control

Studying one legged hopping machines

hopping and running is the same in here

research in gaits

will studying this help us understand more complex legged locomotion?

Stance and Flight -- what are they?

Decomposing the control scheme

Hopping

Forward Speed

Posture

locomotion in three dimension

planar motion in sagittal plane

- the 'plane of motion' (Murthy) forward velocity vector and gravity vector
- Extraplanar degrees of freedom can be controlled using the above mentioned scheme

More legs

more legs = sum of many single legs?

concept of 'virtual legs'

problem becomes complex when there is more than one leg doing active balance

Symmetry

for constant velocity, instantaneous acceleration must integrate to zero.

This is achieved by using odd symmetry

widely used in robots and animals

take home message

active balance

decomposition

one legged locomotion