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Abstract. In this paper, we analyze the convergence of Q-learning with
linear function approximation. We identify a set of conditions that im-
plies the convergence of this method with probability 1, when a fixed
learning policy is used. We discuss the differences and similarities be-
tween our results and those obtained in several related works. We also
discuss the applicability of this method when a changing policy is used.
Finally, we describe the applicability of this approximate method in par-
tially observable scenarios.

1 Introduction

Value-based methods such as TD-learning [1], Q-learning [2], SARSA [3] and
others [4,5,6] have been exhaustively covered in the reinforcement learning (RL)
literature and, under mild assumptions, have been proven to converge to the
desired solution [7].

However, many such algorithms require explicit representation of the state-
space, and it is often the case that the latter is unsuited for explicit repre-
sentation. A common way to overcome this difficulty is to combine a suitable
approximation architecture with one’s favorite learning method [8,9]. Encourag-
ing results were reported, perhaps the most spectacular of which by Tesauro’s
Gammon player [10]. Several other works provided formal analysis of conver-
gence when RL algorithms are combined with function approximation. We refer
the early works by Singh et al. [11], Gordon [12] and Van Roy [13]. A few
other works further extended the applicability/performance of these methods,
e.g., [6, 14, 15, 16].

In this paper, we analyze the convergence of Q-learning with linear function
approximation. Our approach is closely related to interpolation-based Q-learning
[15] and the learning algorithm by Borkar [17]. We identify conditions that ensure
convergence of our method with probability 1 (w.p.1). We interpret the obtained
approximation and discuss the corresponding error bounds. We conclude the
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paper by addressing the applicability of our methods to partially observable
scenarios. 1

2 The Framework of Markov Decision Process

A Markov decision process (MDP) is a tuple (X , A, P, r, γ) where X is compact
subspace of Rp representing the state-space and A is a finite set of possible
actions. Pa(x, U) is a probability kernel determining the probability of moving
from state x ∈ X to a measurable set U ⊂ X by choosing action a ∈ A. The
function r : X × A × X −→ R is a deterministic function assigning a numerical
reward r(x, a, y) every time a transition from x to y occurs after taking action a.
The use of this function r greatly simplifies the notation without introducing a
great loss in generality. We further assume that there is a constant R ∈ R such
that |r(x, a, y)| < R for all x, y ∈ X and all a ∈ A.2 The constant 0 < γ < 1 is
a discount-factor.

The purpose of the agent is to maximize the expected total sum of discounted
rewards, E [

∑∞
t=0 γtR(Xt, At)], where R(x, a) represents the random “reward”

received for taking action a ∈ A in state x ∈ X .3 The optimal value function V ∗

is defined for each state x ∈ X as

V ∗(x) = max
{At}

E

[ ∞∑

t=0

γtR(Xt, At) | X0 = x

]

(1)

and verifies
V ∗(x) = max

a∈A

∫

X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).

which is a form of the Bellman optimality equation. The optimal Q-values
Q∗(x, a) are defined for each state-action pair (x, a) ∈ X × A as

Q∗(x, a) =
∫

X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy). (2)

From Q∗, the optimal policy is defined as a mapping π∗ : X −→ A verifying

π∗(x) = arg max
a∈A

Q∗(x, a), for all x ∈ X .

Since the optimal policy π∗ can be obtained from Q∗, the optimal control prob-
lem is solved once the function Q∗ is known for all pairs (x, a) ∈ X × A.

More generally, we define a policy πt as a mapping πt : X × A −→ [0, 1] that
generates a control process {At} verifying

P [At = a | Xt = x] = πt(x, a),

1 Due to space limitations, we do not include the proof of the results in here and
simply provide the general idea behind the proof. The details can be found in [18].

2 This assumption is tantamount to the standard requirement that the rewards R(x, a)
have uniformly bounded variance.

3 Notice that R(x, a) is random in its dependence of the next state.
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for all t. Since πt(x, ·) is a probability distribution over A, it must satisfy∑
a∈A πt(x, a) = 1, for all x ∈ X . A stationary policy is a policy π that does not

depend on t. A deterministic policy is a policy assigning probability 1 to a single
action in each state. We denote such policy as a function πt : X −→ A.

Given any function q : X × A −→ R, we can define the operator

(Hq)(x, a) =
∫

X

[
r(x, a, y) + γ max

u∈A
q(y, u)

]
Pa(x, dy). (3)

The function Q∗ introduced above is a fixed-point of the operator H. This oper-
ator is a contraction in the sup-norm and, theoretically, a fixed-point iteration
could be used to determine Q∗. On the other hand, if P or r (or both) are not
known, the Q-learning algorithm can be used, defined by the update rule

Qk+1(x, a) = (1 − αk)Qk(x, a) + αk

[
R(x, a) + γ max

u∈A
Qk(X(x, a), u)

]
, (4)

where Qk(x, a) is the kth estimate of Q∗(x, a), X(x, a) is a X -valued random
variable obtained according to the probabilities defined by P and {αk} is a step-
size sequence. Notice that R(x, a) and X(x, a) can be obtained through some
simulation device, not requiring the knowledge of either P or r. The estimates
Qk converge with probability 1 (w.p.1) to Q∗ as long as

∑

t

αt = ∞
∑

t

α2
t < ∞.

The Q-learning algorithm was first proposed by Watkins in 1989 [2] and its
convergence w.p.1 later established by several authors [19, 7].

3 Q-Learning with Linear Function Approximation

In this section, we establish the convergence properties of Q-learning when using
linear function approximation. We identify the conditions ensuring convergence
w.p.1 and derive error bounds for the obtained approximation. The results de-
rived herein are deeply related with other approaches described in the literature,
e.g., [15, 17].

3.1 Combining Q-Learning with Linear Function Approximation

We previously suggested that a fixed-point iteration could theoretically be used
to determine Q∗. This implicitly requires that the successive estimates for Q∗

can be represented compactly and stored in a computer with finite memory. To
solve for Q∗ we can use the fixed-point iteration proposed in Section 2 or the
Q-learning algorithm, if P and r are not known.

However, if X is an infinite set, it is no longer possible to straightforwardly
apply any of the aforementioned methods. For example, the updates in (4) ex-
plicitly consider the Q-values for each individual state-action pair and there will
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be infinitely many such pairs if X is not finite. Therefore, some compact repre-
sentation of either X or Q∗ is necessary to tackle the infinite nature of X . In our
approach, we focus on compact representations for Q∗.

In our pursuit to approximate Q∗, we consider a family of functions Q = {Qθ}
parameterized by a finite-dimensional parameter vector θ ∈ RM . We replace the
iterative procedure to find Q∗ by a suitable “equivalent” procedure to find a
parameter θ∗ so as to best approximate Q∗ by a function in Q. We thus move
from a search in an infinite dimensional function space to a search in a finite
dimensional space (RM ). This has an immediate implication: unless if Q∗ ∈ Q,
we will not be able to determine Q∗ exactly. Instead, we will determine the fixed
point of a combined operator PH, where P is some mapping that “projects” a
function defined in X × A to a point in Q.

In this paper we admit the family Q to be linear in that if q1, q2 ∈ Q, then
so does αq1 + q2 for any α ∈ R. Thus, Q is the linear span of some set of
linearly independent functions ξi : X × A −→ R, and each q ∈ Q can be written
as a linear combination of such ξi. Therefore, if Ξ = {ξ1, . . . , ξM} is a set of
linearly independent functions, we interchangeably use Qθ and Q(θ) to denote
the function

Qθ(x, a) =
M∑

i=1

ξi(x, a)θ(i) = ξ�(x, a)θ, (5)

where θ(i) is the ith component of the the vector θ ∈ RM and ξi(x, a) is the ith
component of the vector ξ(x, a) ∈ RM .

We throughout take Ξ = {ξi, i = 1, . . . , M} as a set of M bounded, linearly
independent functions verifying

∑

i

|ξi(x, a)| ≤ 1 (6)

for all (x, a) ∈ X × A and eventually introduce further restrictions on the set Ξ
as needed.

3.2 Linear Approximation Using Sample-Based Projection

We now consider a sample-based approximation model that, while imposing
somewhat strict conditions on the set of functions Ξ, will allow us to derive
useful error bounds for the obtained approximation Qθ∗ . For that, we assume
that the functions in Ξ verify

‖ξi‖∞ = 1. (7)

Clearly, if (6) and (7) simultaneously hold, linear independence of the functions
in Ξ arises as an immediate consequence. 4 We take the family Q as the linear
span of Ξ.

For each function ξi ∈ Ξ we take a point (xi, ai) in X×A such that |ξi(xi, ai)|=1
and denote by I the set obtained by gathering M of such points, one for each ξi ∈
4 For each function ξi ∈ Ξ there is a point (x, a) such that |ξi(x, a)| = 1, as ‖ξi‖∞ = 1.

Then, ξj(x, a) = 0 for all j �= i and the functions in Ξ are linearly independent.
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Ξ. Let B is the set of all (essentially) bounded functions defined on X × A and
taking values on R and define the mapping ℘ : B −→ RM as

(℘f)(i) = f(xi, ai), (8)

where (℘f)(i) denotes the ith component of ℘f and (xi, ai) is the point in I
corresponding to ξi. ℘f is properly defined for every f ∈ B and verifies

‖℘f‖∞ ≤ ‖f‖∞
℘[αf1 + f2] = α℘f1 + ℘f2.

Our variant of Q-learning iteratively determines the point θ∗ ∈ RM verifying
the fixed-point recursion

θ∗ = ℘HQ(θ∗), (9)

where H is the operator defined in (3). Since H is a contraction in the sup-norm
and

∑
i |ξi(x, a)| ≤ 1, the fixed point in (9) is properly and uniquely defined.

To derive the expression of the algorithm, we remark that (9) can be explicitly
written as

θ∗(i) =
∫

X
δ(xi,ai)(x, a)

∫

X

[
r(x, a, y) + γ max

u
ξ�(y, u)θ∗

]
Pa(x, dy)dμ(x, a),

where μ is some probability measure on X × A and δ(xi,ai) is the Dirac delta
centered around (xi, ai). Let gε be a smooth Dirac approximation, such that

∫

gε(x, a; y, u)dμ(y, u) = 1

lim
ε→0

∫

gε(x, a; y, u)f(y, u)dμ(y, u) = f(x, a).

Let π be a stochastic stationary policy and suppose that {xt}, {at} and {rt}
are sampled trajectories from the MDP (X , A, P, r, γ) using policy π. Then, given
any initial estimate θ0, we generate a sequence {θt} according to the update rule

θt+1(i) = θt(i) + αtgεt(xi, ai; xt, at)
[
rt + γ max

u∈A
ξ�(xt+1, u)θt − ξ�(xt, at)θt

]
,

where {εt} is a sequence verifying

εt+1 = (1 − βt)εt.

More generally, we can have

εt+1 = εt + βth(εt),

where h is chosen so that the ODE ẋt = h(xt) has a globally asymptotically
stable equilibrium in the origin.

Under some regularity assumptions on the Markov chain (X , Pπ) obtained
using the policy π and on the step-sizes αt and βt, the trajectories of the algo-
rithm closely follow those of an associated ODE with a globally asymptotically
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stable equilibrium point θ∗. Therefore, the sequence {θt} will converge w.p.1 to
the equilibrium point θ∗ of the ODE.

We now state our main convergence result. Given a MDP (X , A, P, r, γ), let
π be a stationary stochastic policy and (X , Pπ) the corresponding Markov chain
with invariant probability measure μX . Denote by Eπ [·] the expectation w.r.t.
the probability measure μπ defined for every set Z × U ⊂ X × A as

μπ(Z × U) =
∫

Z

∑

a∈U

π(x, a)μX (dx).

Also, define α̂t(i) as
α̂t(i) = αtgεt(xi, ai; xt, at).

Theorem 1. Let (X , A, P, r, γ) be a Markov decision process and assume the
Markov chain (X , Pπ) to be geometrically ergodic with invariant probability mea-
sure μX . Suppose that π(x, a) > 0 for all a ∈ A and μX-almost all x ∈ X .

Let Ξ = {ξi, i = 1, . . . , M} be a set of M functions defined on X × A and
taking values in R. In particular, admit the functions in Ξ to verify ‖ξi‖∞ = 1
and

∑
i |ξi(x, a)| ≤ 1.

Then, the following hold:

1. Convergence: For any initial condition θ0 ∈ RM , the algorithm

θt+1(i) = θt(i) + αtgεt(xi, ai; xt, at)
[
rt + γ max

u∈A
ξ�(xt+1, u)θt − ξ�(xt, at)θt

]
,

(10a)

εt+1 = (1 − βt)εt. (10b)

converges w.p.1 as long as the step-size sequences {αt} , {βt} are such that
∑

t

αt = ∞
∑

t

α2
t < ∞; (11a)

∑

t

βt = ∞
∑

t

β2
t < ∞ (11b)

βt = o(αt) and {αt} is built so that mini

∑
t α̂t(i) = ∞.

2. Limit of convergence: Under these conditions, the limit function Q(θ∗)
of (10) verifies

Qθ∗(x, a) = (PHQθ∗)(x, a), (12)

where P : B → Q denotes the operator given by

(PQ)(x, a) = ξ�(x, a)℘Q.

3. Error bounds: Under these conditions, the limit function Qθ∗ verifies the
bound

‖Q(θ∗) − Q∗‖∞ ≤ 1
1 − γ

‖PQ∗ − Q∗‖∞ . (13)

Proof. See [18].
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3.3 Discussion

Before concluding this section, we briefly discuss the conditions of Theorem 1
and compare our results with several related works in the literature.

Convergence Conditions: In Theorem 1 we identified several conditions that
guarantee convergence w.p.1 of the algorithm defined by the update rule in (10).
These conditions can be classified in two main groups: conditions on the problem
and conditions on the algorithm.

The fundamental condition on the model is that of geometric ergodicity of the
Markov chain (X , Pπ). Geometric ergodicity ensures that the chain converges
exponentially fast to stationarity and, as such, its steady-state behavior is prop-
erly captured by the sample trajectories used in the updates. This allows the
analysis of convergence to be conducted in terms of a stationary “version” of it:
we compare the trajectories of the algorithm with those a “mean” ODE, which
is globally asymptotically stable with equilibrium point θ∗.

Moreover, geometric ergodicity also ensures that all “interesting” regions of the
state-space are visited infinitely often [20]. The condition that π(x, a) > 0 for all
a ∈ A and μX -almost every x ∈ X ensures that, in these “interesting” regions
of the state-space, every action is tried infinitely often. Therefore, geometric
ergodicity and the requirement that π(x, a) > 0 for all a ∈ A and μX -almost
all x ∈ X can be interpreted as a continuous counterpart to the usual condition
that all state-action pairs are visited infinitely often.

The conditions on the algorithm are those concerning the basis functions used
and those concerning the step-size sequences ({αt} and {βt}). With respect to
the former, we require that the functions are linearly independent. This is a
simple way of guaranteeing (in a rather conservative way) that no two functions
ξi lead to “colliding updates” as happens in the known counter-example presented
by [21]. Furthermore, by requiring that

∑
|ξi(x, a)| ≤ 1 for all (x, a) ∈ X × A,

we ensure that ‖Q(θ)‖∞ ≤ ‖θ‖∞, thus making HQ(θ) a contraction in θ (in the
sup-norm). This fact is important, for example, to ensure the existence of θ∗.

To clarify the conditions on the step-size sequences, we start by remarking
that, if ε is held fixed, the algorithm will converge to a neighborhood of the
desired point in parameter space. We could then proceed as follows. As soon as
the estimates were “sufficiently close” to this neighborhood, we could decrease ε
and wait for the estimates to, once again, approach a new, smaller neighborhood
of the desired point. We would then decrease ε once again, etc.

This “gross” version of our algorithm illustrates the fact that ε cannot go to
zero arbitrarily fast. In particular, it is necessary to ensure that each component
of the estimate vector θt is “sufficiently” updated as ε is decreased. This clearly
depends on the smooth Dirac approximation chosen. The relation between the
two referred entities (gε and the rate of convergence of εt) is stated in (11).

Such condition on the step-sizes {αt} can be ensured in different ways (for
example, defining αt from the ε-cuts of gε as in [15]). As one final note, we
remark that the use of “broader” Dirac approximations will probably allow faster
convergence of εt while “narrower” Dirac approximations will probably lead to
slower convergence of εt.
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Finally, one last remark to state that since the space B of essentially bounded
functions with the sup-norm is a Banach space (with no orthogonal projection
defined), we defined a projection operator P that is non-expansive in the sup-
norm, thus making the combined operator PH a contraction in this norm.

Related Work: The early works by Gordon [12] and Tsitsiklis and Van Roy [13]
provide convergence analysis for several variations of dynamic programming us-
ing function approximation. There is also a brief discussion on how stochastic
variations of these algorithms can be used. Closely related is the soft-state ag-
gregation approach [11]. This approach uses a “soft”-partition of the state-space
(each state x belongs to region i with a probability pi(x)) and an “average” Q-
value Q(i, a) is defined for each region-action pair. The method uses standard
Q-learning updates to determine the average Q-values for each region.

In a different work, Tsitsiklis and Van Roy [16] provide a detailed analysis of
temporal difference methods for policy evaluation. Given a stationary policy π
whose value function V π is to be estimated, a parameterized linear family V of
functions is used to approximate V π. The authors establish the the convergence
of this method w.p.1 and provide an interpretation of the obtained limit point as
a fixed point of a composite operator PT(λ), where P is the orthogonal projec-
tion into V and T(λ) is the TD operator. The authors also derive error bounds
on the obtained approximation. Several authors later extended these results,
e.g., [6, 14, 22].

Szepesvári and Smart [15] proposed a version of Q-learning that approximates
the optimal Q-values at a given set of sample points {(xi, ai), i = 1, . . . , N} and
then uses interpolation to estimate Q∗ at any query point. This method, dubbed
interpolation-based Q-learning (IBQL) uses the update rule

θt+1(i) = θt(i) + αt(i)gε(xi, ai; xt, at)
(
rt + max

u∈A
Qθt(xt+1, u) − θt(i)

)
. (14)

The authors establish convergence w.p.1 of the algorithm and provide an inter-
pretation of the limit point as the fixed-point of a composite operator PĤ, where
P is a projection-like operator and Ĥ can be interpreted as a modified Bellman
operator.

We emphasize the similarity between the update rules in (14) and (10). The
fundamental difference between these two methods lies on the fact that IBQL
only makes use of the estimated Q-function to predict the value of the next state,
as seen in (14). Therefore, the updates of IBQL rely on a vector d̂t of modified
temporal differences with ith component given by

d̂t(i) = rt + γ max
u∈A

Qθt(xt+1, u) − θt(i) =

= rt + γ max
u∈A

Qθt(xt+1, u) − Qθt(xi, ai).

Notice that each d̂t(i) is not a temporal-difference in the strict sense, since it
does not provide a one-step estimation “error”. This means that the information
provided by d̂t(i) may lead to “misleading” updates. Although not affecting the
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convergence of IBQL in the long-run, IBQL may exhibit slower convergence
because of this. On the other hand, if IBQL is used with a vanishing ε, the effect
of these misleading updates will vanish as t → ∞. In the experimental results
portrayed in [15], a vanishing ε was used. Nevertheless, IBQL exhibited initially
slower convergence than of other methods, probably because of this reported
effect.

We also remark that, in [15], the convergence result requires the underlying
Markov chain to be positive Harris and aperiodic. These conditions are actually
weaker than the geometric ergodicity required by our result. However, in many
practical situations, the former conditions will actually imply the latter.5 This
means that the conditions on the problem required in Theorem 1 are essentially
similar to those in [15] placing the results of both papers in a common line of
work and, basically, leading to concordant conclusions.

Finally, we also refer the close relation between the method in Subsection 3.2
and the algorithm described in [17]. In the aforementioned work, Borkar provides
a convergence analysis of what we may refer to as functional Q-learning. This
functional Q-learning can be seen as an extension of classical Q-learning to func-
tional spaces, and arises from the approach proposed by Baker [23] to stochastic
approximation in function spaces. The update equation for this method is fun-
damentally similar to (10). The main difference is that, while we consider only
a fixed, finite set of points I = {(x1, a1), . . . , (xM , aM )}, the algorithm in [17]
maintains a complete representation of Q∗, each component of which is updated
at each iteration. Clearly, maintaining such a representation of Q∗ is computa-
tionally infeasible and the algorithm should instead maintain a complete record
of the history of past events H = {(x0, a0, r0), . . . , (xt, at, rt), . . .}, used to esti-
mate Q∗ at a generic point (x, a).

4 Partially Observable Markov Decision Processes

Recall that, in a Markov decision process (X , A, P, r, γ), an agent acts at each
time instant based on the current state of the environment and so as to maximize
its expected total discounted reward. However, if the current state is unknown
and the agent has available only a noisy observation of it, the elegant theory and
effective algorithms developed for Markov decision processes are in general not
applicable, even in the simpler case of finite X .

Partially observable Markov decision processes (POMDPs) present a complex
challenge due to the remarkable complications arising from the “simple” con-
sideration of partial state observability. Exact solution methods for POMDPs
generally consist on dynamic-programming based iterative procedures and have
been found computationally too expensive for systems with more than a few
dozen states [24, 25]. This has led many researchers to focus on developing ap-
proximate methods using a variety of approaches. We refer to [26, 27] for good
surveys on POMDP exact and approximate methods.
5 An aperiodic, positive Harris chain is geometrically ergodic as long as supp μX has

non-empty interior.
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Some approximate solution methods rely on value-based reinforcement learn-
ing algorithms such as Q-learning. Examples include the Linear-Q algorithm [28],
the SPOVA-RL algorithm [29] or the Fast-RL algorithm [30]. A thorough analysis
of several such methods can also be found in [26].

In this section we discuss how our results from the previous section can be
applied to POMDPs. We identify a set of conditions on POMDPs that ensure
the applicability of the method in Section 3. As a side-note, we remark that
the Linear-Q algorithm referred above can be cast as a simple variation of the
method described in Section 3. Our analysis in this section can easily be adapted
to provide a formal proof of the convergence of this algorithm.

4.1 Partial Observability and Internal State

Let (X , P) be a finite state-space Markov chain. Let Z be a finite set of possible
observations and suppose that, at each time instant, the the state Xt of the chain
is unaccessible. Instead, a random measurement Zt is “observed” which depends
on the state Xt according to an observation probability given by

P [Zt = z | Xt = x] = O(x, z), (15)

A partially observable Markov chain is a 4-tuple (X , Z, P, O), where X and Z
are, respectively, the state and observation spaces (both considered finite) and
P and O are the transition and observation probability matrices.

Let bt be a discrete probability measure on X conveying the probability dis-
tribution of the state Xt over the set X at time instant t. Since X is assumed
finite, bt is a vector with xth component

bt(x) = P [Xt = x | Ft] , (16)

where Ft is the history up to time t. Suppose that at time instant t the chain is in
state x ∈ X with probability bt(x) and a transition occurs, with an observation
Zt+1 = z made at instant t + 1. Then it holds that

bt+1(y) =
∑

x∈X bt(x)P(x, y)O(y, z)
∑

x,w∈X bt(x)P(x, w)O(w, x)
. (17)

It is clear from (17) that bt+1 is Markovian in its dependence of the past history.
Therefore, we define from bt a sequence {Bt} of random variables, each taking
the value Bt = bt at time instant t. Since each bt is a probability vector with,
say, n + 1 components, Bt lies in the n-dimensional probability simplex S

n.
Summarizing, for any partially observable Markov chain (X , Z, P, O) there is

an equivalent fully-observable Markov chain (Sn, P̂), where the kernel P̂ is given,
for any b ∈ S

n and any measurable set U ⊂ S
n, by

P̂(b, U) =
∑

z

∑

x,y

b(x)P(x, y)O(y, z)IU (B(b, z)),
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where B(b, z) is the vector obtained from b using (17) with observation z and IU

is the indicator function for the set U . Notice that the xth coordinate of vector
Bt describes the belief that the underlying state of the chain is Xt = x, and it
is common to refer to the b vectors as belief-states.

Notice that, by considering the chain (Sn, P̂) of beliefs instead of the partially
observable chain (X , Z, P, O) we move from a finite, partially observable Markov
chain with state-space X to an infinite, fully observable Markov chain with state-
space S

n. We now identify conditions on P and/or O that ensure the chain (Sn, P̂)
to be uniformly ergodic.

Theorem 2. Let (X , Z, P, O) be a partially observable Markov chain, where the
chain (X , P) is irreducible and aperiodic. Suppose that there is an observation
z ∈ Z and a state x∗ ∈ X such that, for all y ∈ X , O(y, z) = δ(x∗, y). Then, the
Markov chain (Sn, P̂) is uniformly ergodic.

Proof. See [18].

4.2 POMDPs and Associated MDPs

A tuple (X , A, Z, P, O, r, γ) is a partially Observable Markov Decision Process
(POMDP), where X , A, P, r and γ are as defined in Section 2, Z is the observation-
space and O represents the (action-dependent) observation probabilities. We con-
sider X , A and Z to be finite sets.

Using a development entirely similar to the one presented in the previous
subsection, given a POMDP (X , A, Z, P, O, r, γ) we can derive a fully observable
MDP (Sn, A, P̂, r̂, γ), where, for each a ∈ A, P̂ and r̂ are defined as

P̂a(b, U) =
∑

z

∑

x,y

b(x)Pa(x, y)Oa(y, z)IU (B(b, a, z));

r̂(b, a, b′) =
∑

x,y

b(x)Pa(x, y)r(x, a, y),

where B(b, a, z) is the updated probability vector given action a and observation
z with yth component given by

B(b, a, z)y =
∑

x∈X bt(x)Pa(x, y)Oa(y, z)
∑

x,w∈X bt(x)Pa(x, w)Oa(w, x)
.

Notice that the reward r̂(b, a, b′) corresponds to the expected immediate reward
for being in each state x with probability b(x) and taking action a. As expected,
it does not depend on b′.6

This new MDP is an infinite state-space counterpart to the partially observ-
able Markov decision process (X , A, Z, P, O, r, γ) and we are interested in apply-
ing the methods from the previous section to this continuous-state MDP.
6 Notice that the rewards do not depend on the observations and the belief b′ is

a function of the current belief, action and observation, so it is natural that r̂ is
independent of b′.
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Notice that, even if the complete POMDP model is known, the use of a
simulation-based solution may still be preferable to the computationally heavier,
exact methods. On the other hand, it may happen that the reward r is unknown
and, therefore, recurring to simulation-based methods is the only alternative
available. Finally, we emphasize that, in order to use the methods from the
previous section, the MDP (Sn, A, P̂, r̂, γ) needs to be fully observable, i.e., the
beliefs bt must be computable at every time step t. This means that the agent
must know the model parameters P and O.

In the new MDP (Sn, A, P̂, r̂, γ), it is straightforward to define the optimal
value function V ∗ : S

n −→ R, verifying

V ∗(b) = max
a∈A

E
[
r̂(b, a, b′) + γV δ(b′)

]
,

and the optimal Q-function, verifying

Q∗(b, a) = E

[

r(b, a, b′) + γ max
u∈A

Q∗(b′, u)
]

.

More intuitive and well-known expressions for these functions can readily be
obtained by replacing P̂ and r̂ by the corresponding definitions, yielding

V ∗(b) = max
a∈A

∑

x,y∈X
b(x)Pa(x, y)

[

r(x, a, y) + γ
∑

z∈Z
Oa(y, z)V ∗(bz)

]

;

Q∗(b, a) =
∑

x,y∈X
b(x)Pa(x, y)

[

r(x, a, y) + γ
∑

z∈Z
Oa(y, z)max

b∈A
Q∗(bz, b)

]

.

To apply the method from Section 3 to the MDP M = (Sn, A, P̂, r̂, γ) with
guaranteed convergence, we need to check if M verifies all conditions on the
problem required in Theorem 1. This condition is concerned with the geometric
ergodicity of the chain obtained with the learning policy. Combining Theorem 1
with Theorem (2), it is immediate that the Q-learning algorithm with linear
function approximation analyzed in Section 3 can be applied to POMDPs with
guaranteed convergence, as long as the underlying MDP is ergodic and there
is a distinguishable state x∗ ∈ X . We note that ergodicity of the underlying
MDP is a standard assumption in classical RL methods and, therefore, partial
observability simply requires the single additional condition of a distinguishable
state.

5 Conclusions and Future Work

In this paper we have analyzed the convergence of Q-learning with linear func-
tion approximation. Given a linear family Q of functions, we defined an update
rule that “relies” on a projection operator P defined in the space of (essentially)
bounded functions. For the algorithm thus obtained we identified the conditions
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under which convergence w.p.1 is guaranteed. We also showed the limit function
to verify the fixed-point recursion

Qθ∗(x, a) = (PHQθ∗)(x, a)

and discussed the relation between the method and results in this paper and
those in related works such as [15,17]. Finally, we showed that partially observ-
able Markov decision processes can be addressed by RL algorithms using function
approximation as long as the typical convergence conditions are verified for the
underlying Markov decision process and there is, at least, one observable state.

Several important remarks are in order. First of all, the error bound in Theo-
rem 1 is given as a function of the quantity ‖PQ∗ − Q∗‖. Notice that the func-
tion PQ∗ can be interpreted as the “best” representation of Q∗ in Q. The error
bound in Theorem 1 means that the obtained approximation is, at most, “almost
as good” as PQ∗. It also means that, this approximation may be of little use, if
the space Q poorly represents the desired function: the closest function in Q will
still be a poor approximation, and there are no guarantees on its practical use-
fulness (in terms of the corresponding greedy policy). Notice nevertheless that,
if Q∗ ∈ Q, the method will deliver the optimal function Q∗. Therefore, when
using function approximation, the space Q should be chosen so as to include all
available information regarding the true function to be estimated. The problem
of how to choose the basis functions is currently the target of intense research
in the RL community. Some work has been done in this area [31, 32, 33], but a
lot more can be done.

A second remark concerns the usefulness of the algorithm in Section 3 if a
fixed policy must be used during learning (instead of a policy that depends on
the estimates Qt). Although the result described in the paper considers a fixed
learning policy, it is possible to extend this result to encompass the use of a policy
πθ that depends continuously on θ. In particular, if the following condition holds
for every (x, a) ∈ X × A

|πθ(x, a) − πθ′(x, a)| ≤ C ‖θ − θ′‖ ,

with C > 0, it is possible to extend the conclusions of Theorem 1 to algorithms
using θ-dependent policies. Further work can explore results on the stability of
perturbed ODEs to extend the fundamental ideas in this paper to address the
convergence of on-policy learning algorithm (e.g., SARSA).

Also, the methods proposed make no use of eligibility traces. It seems likely
that the results in this paper can be modified so as to accommodate eligibility
traces and thus improve their overall performance.

Thirdly, we comment on the results presented in Section 3. In this section,
we described the use of the algorithm in Section 3 to POMDPs by considering
equivalent, fully observable MDPs. Recall that tracking the state of an associ-
ated MDP consists in tracking the belief-state bt of the original POMDP. As
already stated, this implies that the agent must know the parameters P and
O of the POMDP. This is less general than the approach adopted in many RL
methods, where no model of the system is assumed. However, in several practical
applications (e.g., robotic applications) this is a reasonable assumption.
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Finally, notice that the overall conditions required to ensure convergence of
the methods in Section 3 in partially observable scenarios are similar to the
requirements for convergence in fully observable scenarios. Convergence in par-
tially observable scenarios simply requires one extra condition: that at least one
state is identifiable. If we consider that, in many situations, the reinforcement
function provides additional information on the underlying state of the system,
the existence of a distinguishable state may be a less stringent condition than
it appears at first sight. Nevertheless, it is likely that results on the ergodic be-
havior of the posterior probabilities of hidden Markov models may be adapted
so as to alleviate this condition.
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