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Gaussian distribution

N (µ,Σ) := (2π)D/2|Σ|−0.5 exp(−0.5(x− µ)T Σ−1(x− µ))

fully specified by mean µ and covariance matrix Σ

nice property: conditionals and marginals of a joint Gaussian are
again Gaussian
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Definition

Definition (Åström, 2006)

A stochastic process is a function of two arguments
{x(t, ω), t ∈ T, ω ∈ Ω}, where T is a (not necessarily finite) time interval,
and Ω is a sample space. For fixed t ∈ T , x(t, ·) is thus a random variable
and for fixed ω, x(·, ω) is a function of time, a realization of the processa.

aalso called path or trajectory

in Euclidean spaces probability distributions define a probability
measure on subsets of Ω

consider a function as an infinitely long vector

Definition (Åström, 2006; Rasmussen and Williams, 2006)

A normal or Gaussian process is a collection of random variables, any
finite number of which have consistent joint Gaussian distributions.

GP as distribution over functions
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Generalization of Gaussian distribution

recall:
Gaussian distribution is fully specified by mean vector µ and covariance
matrix Σ

here:
Gaussian process is fully specified by mean function µ(x) and covariance
function k(x,x′)
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Prediction

joint Gaussian distribution of training set X and test set X∗

p(f , f∗) = N
(
0,

[
k(X,X) k(X,X∗)
k(X∗,X) k(X∗,X∗)

])
then the conditional is given by

p(f∗|f) = N (m,Σ)

m = k(X∗,X)k(X,X)−1f

Σ = k(X∗,X∗)− k(X∗,X)k(X,X)−1k(X,X∗)

for only 1 test input x∗

m(x∗) =
∑

i

αik(xi,x∗)

predicted mean linear combination of cross-covariances
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Extension to multiple test points

previous results extend to arbitrarily many test points
construct posterior Gaussian process from a GP prior conditioned on

observed data
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Bayesian model selection

parametric Bayesian inference:

1 observe data

2 define a prior

3 determine posterior conditioned on data and prior

data: X,y

model: y = fw(x) + ε

levels:

1 parameters w of f

2 hyperparameters θ controlling the distribution of w
3 set of possible models H = {Hi : i ∈ I}

nonparametric Bayesian inference:
parameters w are given by the function f itself

embedding into GP framework
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Marginal likelihood

end up with optimizing the (log-) marginal likelihood to get the best
hyperparameters

log p(y|X,θ,Hi) = −1
2
yT K−1

θ y︸ ︷︷ ︸
data fit term

−1
2

log |Kθ|︸ ︷︷ ︸
complexity penalty

−n

2
log(2π)

trade-off between data-fit and model complexity (Occam’s razor)
optimizing marginal likelihood automatically finds the least complex

model that reasonably explains observed data
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Wrap-up I

GP is distribution in function space

nonparametric Bayesian inference

favors easy models

restriction to finite sets
properties of Gaussian distribution
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Who am I?
What am I able to do?

recall:
GP is able to find a model of low complexity that explains data

Why not identification of system dynamics to build a model based on
finite training set?

simulations showed that this works well

f ∼ GP(m(x), k(x,x′))

for each test input obtain predicted mean and confidence interval
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What will happen next?
Predictions with GPs

1 1-step prediction (near future)

2 k-step prediction (later)

idea: propagate not only mean, but also uncertainty information
prediction for uncertain inputs needed (Girard et al., 2003)

problem:

p(f(x∗)|µx∗ ,Σx∗) =
∫

p(f(x∗)|x∗,X,y)p(x∗)dx∗

Gaussian approximation (moment matching).
Example:

m(x∗) ≈ E
x∗

[
E

f(x∗)
[f(x∗)|x∗]

]
= E

x∗
[µ(x∗)]
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k-step ahead prediction

different methods

learn GP for each time step doing a direct k-step prediction of the
dynamics

learn 1 GP for 1-step prediction and apply previous method
recursively
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How about others?
Embedding into RL framework

so far:

model building via GPs

approximate k-step ahead prediction

what can we use it for?

policy evaluation: solve

E
π

[∑
k

γkr(xk,uk)

]

given by∫
γNr(xN )p(xN )dxN +

N−1∑
k=0

γk

∫ ∫
p(xk,uk)r(xk,uk)dxkduk .

policy gradient
derivative w.r.t. (hyper-)parameters is possible

fitted value iteration (modeling V and Q function by GPs)
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Almost forgotten

don’t forget: GPs usually map into R
construct multi-dimensional output:

1 place GP on each output dimension (independent of other outputs)
using the same inputs

f ∼

GP1(m1, k1)
...

GPn(mn, kn)


2 construct joint probability distribution for output

N (m,Σ)

Σ =

 σ2
1 Cov(y1, y2) . . . Cov(y1, yn)
...

. . . . . .
...

Cov(yn, y1) . . . σ2
n
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Current research with GPs in RL and control

some examples

model building and optimal control (Kocijan et al., 2003; 2004;
Grancharova et al., 2007)

policy iteration with GP-models of dynamics and value function
(Rasmussen and Kuss, 2004)

value function approximation without model (Engel et al., 2003;
2005)

Bayesian policy gradient with known model (Ghavamzadeh and
Engel, 2007)
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Wrap-up II

GPs can be used in RL framework

several difficulties occur

GPs in standard RL methods are being investigated

so far no approach to solve everything together only with GPs

17



References I

Karl J. Åström.
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