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Tübingen, Germany

August 03, 2007



Outline

1 Environment

2 Who am I?

3 What will happen next?

4 How about others?

2



Gaussian distribution

N (µ,Σ) := (2π)D/2|Σ|−0.5 exp(−0.5(x− µ)T Σ−1(x− µ))

fully specified by mean µ and covariance matrix Σ

nice property: conditionals and marginals of a joint Gaussian are
again Gaussian
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Definition

Definition (Åström, 2006)

A stochastic process is a function of two arguments
{x(t, ω), t ∈ T, ω ∈ Ω}, where T is a (not necessarily finite) time interval,
and Ω is a sample space. For fixed t ∈ T , x(t, ·) is thus a random variable
and for fixed ω, x(·, ω) is a function of time, a realization of the processa.

aalso called path or trajectory

in Euclidean spaces probability distributions define a probability
measure on subsets of Ω

consider a function as an infinitely long vector

Definition (Åström, 2006; Rasmussen and Williams, 2006)

A normal or Gaussian process is a collection of random variables, any
finite number of which have consistent joint Gaussian distributions.

GP as distribution over functions
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Definition (Åström, 2006)

A stochastic process is a function of two arguments
{x(t, ω), t ∈ T, ω ∈ Ω}, where T is a (not necessarily finite) time interval,
and Ω is a sample space. For fixed t ∈ T , x(t, ·) is thus a random variable
and for fixed ω, x(·, ω) is a function of time, a realization of the processa.

aalso called path or trajectory

in Euclidean spaces probability distributions define a probability
measure on subsets of Ω
consider a function as an infinitely long vector
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Generalization of Gaussian distribution

recall:
Gaussian distribution is fully specified by mean vector µ and covariance
matrix Σ

here:
Gaussian process is fully specified by mean function µ(x) and covariance
function k(x,x′)
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Prediction

joint Gaussian distribution of training set X and test set X∗

p(f , f∗) = N
(
0,

[
k(X,X) k(X,X∗)
k(X∗,X) k(X∗,X∗)

])
then the conditional is given by

p(f∗|f) = N (m,Σ)

m = k(X∗,X)k(X,X)−1f

Σ = k(X∗,X∗)− k(X∗,X)k(X,X)−1k(X,X∗)

for only 1 test input x∗

m(x∗) =
∑

i

αik(xi,x∗)

predicted mean linear combination of cross-covariances
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Extension to multiple test points

previous results extend to arbitrarily many test points
construct posterior Gaussian process from a GP prior conditioned on

observed data
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Bayesian model selection

parametric Bayesian inference:

1 observe data

2 define a prior

3 determine posterior conditioned on data and prior

data: X,y

model: y = fw(x) + ε

levels:

1 parameters w of f

2 hyperparameters θ controlling the distribution of w
3 set of possible models H = {Hi : i ∈ I}

nonparametric Bayesian inference:
parameters w are given by the function f itself

embedding into GP framework
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Marginal likelihood

end up with optimizing the (log-) marginal likelihood to get the best
hyperparameters

log p(y|X,θ,Hi) = −1
2
yT K−1

θ y︸ ︷︷ ︸
data fit term

−1
2

log |Kθ|︸ ︷︷ ︸
complexity penalty

−n

2
log(2π)

trade-off between data-fit and model complexity (Occam’s razor)
optimizing marginal likelihood automatically finds the least complex

model that reasonably explains observed data
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Wrap-up I

GP is distribution in function space

nonparametric Bayesian inference

favors easy models

restriction to finite sets
properties of Gaussian distribution
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Who am I?
What am I able to do?

recall:
GP is able to find a model of low complexity that explains data

Why not identification of system dynamics to build a model based on
finite training set?

simulations showed that this works well

f ∼ GP(m(x), k(x,x′))

for each test input obtain predicted mean and confidence interval
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What will happen next?
Predictions with GPs

1 1-step prediction (near future)

2 k-step prediction (later)

idea: propagate not only mean, but also uncertainty information
prediction for uncertain inputs needed (Girard et al., 2003)

problem:

p(f(x∗)|µx∗ ,Σx∗) =
∫

p(f(x∗)|x∗,X,y)p(x∗)dx∗

Gaussian approximation (moment matching).
Example:

m(x∗) ≈ E
x∗

[
E

f(x∗)
[f(x∗)|x∗]

]
= E

x∗
[µ(x∗)]
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k-step ahead prediction

different methods

learn GP for each time step doing a direct k-step prediction of the
dynamics

learn 1 GP for 1-step prediction and apply previous method
recursively

13



How about others?
Embedding into RL framework

so far:

model building via GPs

approximate k-step ahead prediction

what can we use it for?

policy evaluation: solve

E
π

[∑
k

γkr(xk,uk)

]

given by∫
γNr(xN )p(xN )dxN +

N−1∑
k=0

γk

∫ ∫
p(xk,uk)r(xk,uk)dxkduk .

policy gradient
derivative w.r.t. (hyper-)parameters is possible

fitted value iteration (modeling V and Q function by GPs)
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Almost forgotten

don’t forget: GPs usually map into R
construct multi-dimensional output:

1 place GP on each output dimension (independent of other outputs)
using the same inputs

f ∼

GP1(m1, k1)
...

GPn(mn, kn)


2 construct joint probability distribution for output

N (m,Σ)

Σ =

 σ2
1 Cov(y1, y2) . . . Cov(y1, yn)
...

. . . . . .
...

Cov(yn, y1) . . . σ2
n


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Current research with GPs in RL and control

some examples

model building and optimal control (Kocijan et al., 2003; 2004;
Grancharova et al., 2007)

policy iteration with GP-models of dynamics and value function
(Rasmussen and Kuss, 2004)

value function approximation without model (Engel et al., 2003;
2005)

Bayesian policy gradient with known model (Ghavamzadeh and
Engel, 2007)
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Wrap-up II

GPs can be used in RL framework

several difficulties occur

GPs in standard RL methods are being investigated

so far no approach to solve everything together only with GPs
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