Decision Making and Reinforcement under Learning Parameter Uncertainty

Shie Mannor
McGill University

Joint work with: Erick Delage (Stanford), Yaakov Engel (UAlberta), Ron Meir (Technion),
Duncan Simester (MIT), Peng Sun (Duke), John Tsitsiklis (MIT)

July 2007

Agenda

Background and context

Parameter uncertainty: Should we care?

The Bayesian approach

Gaussian processes value estimation

Context

Machine Learning: Improve performance with more data

Control/Optimization: Find the best solution (policy)

Statistics: Understand the quality of the solution

Data mining: Find structure in data

Example I: Laptop Power Management

A long-term project with Intel Research

Objective: Save power without annoying the user

Given: Traces of user behavior (120 users $\times 3$ months ≈ 30 years)
Record every 1 second
1B points, each ≈ 100 dimensional

Current state-of-the-art: timeout policies

Validating new policies is not trivial

Example II: Mail-order Catalog

Catalogs can be shipped every ≈ 2 weeks

Each catalog costs $\approx 1 \$$
$\approx 2 \mathrm{M}$ customers over 6 years ($\approx 160 \mathrm{M}$ observations)

Which mailing policy to use?

Objectives:
Short term: Making customers purchase
Long term: Retaining customers

Decision Making

Classical decision making:

I know where I am

I know what I can do

I know what will happen (or at least the distribution of future events)

Decision Making

Real-world decision making

I know where I am

I know what I can do

I am not sure what is the distribution of the reward and future events

Learning = Planning

Planning and learning spectrum

Different knowledge/information models

Small/large state spaces

Simulation/observation

Tractability is key

Off/on policy

Markov Decision Processes

A simple and popular model (MDP)

Ingredients:

1. State space \mathcal{S}
2. Action space \mathcal{A}
3. Reward \mathcal{R} (a random variable)
4. Transition probability $P\left(s^{\prime} \mid s, a\right)$.

Dynamics: $\quad S_{t} \rightarrow A_{t} \rightarrow R_{t} \rightarrow S_{t+1}$

MDPs: The Objective

Objective: maximize (over all policies)

$$
\text { Value function }=v(s)=\mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid S_{0}=s\right]
$$

where $\gamma<1$

There exists an optimal stationary and deterministic policy.

$$
\pi: \mathcal{S} \rightarrow \mathcal{A}
$$

Algorithmically easy: linear programming, policy iteration, value iteration, dynamic programming

Uncertainties

A single trajectory: inherent uncertainty:
A single customer

Aggregate trajectories: parameter uncertainty:
Average across all customers

Different risk attributes

Agenda

Background and Context

Parameter Uncertainty: Should we care?

The Bayesian Approach

Gaussian Processes Value Estimation

Parameter Uncertainty

We always have uncertainty in the parameters

1. I don't have a model - sample from data
2. I know I don't know (part of the model)
3. Things change with time

Probabilistic uncertainty \Leftrightarrow Non-probabilistic uncertainty

Another Source of Uncertainty

Very high dimensional observation spaces

Examples:
Power management
Mail-order catalog problem

Manageable MDPs are small: $\approx 10,000$ states

Actual MDP represents a simplification - model reduction

Model Recap

We know: States (\mathcal{S}) and actions (\mathcal{A})

But rewards (\mathcal{R}) and transitions (P) are not known (exactly)

If \mathcal{S} is not known? $\Rightarrow \mathrm{A}$ different talk

Basic question: What are we going to do?

But first - should we care?

Variance: Illustration

Catalog Circulation Problem

Womens clothing retailer
1.7 million customers $\times 4-6$ years of mailing/purchase history

MDP construction: Recency, Frequency and Monetary Value 64 states: Quartiles (4^{3})

Not a classification problem - need dynamics
250 Sub-samples: 657,000 observations in each
"True" model: All 1.7 million customers

Value Function: True vs. Estimated

STD = \$2
Note: This represents aggregate error

The Control Problem

Optimization induces additional bias
(Jensen's: $X_{1}, X_{2}, \ldots, X_{n} \approx \operatorname{Ber}(1 / 2), \widehat{X}_{i}$ estimates the mean,

$$
\left.1 / 2=\max _{i}\left\{\mathbb{E}\left[\widehat{X}_{i}\right]\right\}<\mathbb{E}\left[\max _{i} \widehat{X}_{i}\right] .\right)
$$

How big is this bias?

Recipe:

1. Divide data to calibration and validation set
2. Solve on calibration
3. Evaluate on validation
4. Estimate the magnitude of bias

The Control Problem: Bias

The Control Problem: Sub-optimality

Solutions Needed

0. Ignore uncertainty: hope for the best (standard approach in ML/OR)
1. Robustify: expect the worst
2. A Bayesian approach: obtain a probability over models
3. Risk aware approach: optimize performance "most of the time"

Agenda

Background and context

Parameter uncertainty: Should we care?

The Bayesian approach

Gaussian processes value estimation

Agenda

Background and context

Parameter uncertainty: Should we care?

The Bayesian approach

Gaussian processes value estimation

The Bayesian Approach I

Suppose we have a prior on \mathcal{R} and P. That is we believe that
$R(s, a) \sim \mathcal{N}: P(x ; \alpha)=C(\alpha) e^{-\left(x-\alpha_{\text {mean }}\right)^{2} / \alpha_{\text {var }}}$
$P(\cdot \mid s, a) \sim$ Dirichlet: $\operatorname{Pr}(x \mid \alpha)=C(\alpha) \Pi_{i=1}^{n} x_{i}^{\alpha_{i}-1}$
After observing data we update our belief

We maintain probability over models

Magic: If we start from $R(s, a) \sim \mathcal{N}$ and $P(\cdot \mid s, a) \sim$ Dirichlet we maintain the form after the update.

The Bayesian Approach II

We have a probability over models:

$$
\mathbb{E}_{\text {models }} \text { and } \operatorname{Pr} \text { models }
$$

We can now consider $V^{\pi}(s)=\mathbb{E}^{\pi} \sum_{t=0}^{\infty} \gamma^{t} R_{t}$ as a random variable

For a given π and a current belief we can ask what is:

$$
\mathbb{E}_{\text {models }}\left[V^{\pi}(s)\right]=\mathbb{E}_{\text {models }}\left[\mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t}\right]\right]
$$

Mail order catalog: aggregation of customers

The Bayesian Approach III

We can also ask (percentile optimization):

$$
\begin{array}{rc}
\max _{\text {policy } \pi, g \in \mathbb{R}} & g \\
\text { s.t. } & \text { Prmodels }\left(V^{\pi} e>g\right) \geq \rho
\end{array}
$$

Value-at-risk: ρ is the risk parameter.
It turns out that solving the percentile optimization is:

1. NP-hard in general.
2. NP-hard even if transitions are known.

But: For Gaussian reward parameters, problem is polytime.

Theorem 1 Percentile optimization is solvable by 2nd order cone programming if there is Gaussian uncertainty in the reward.
(Delage and Mannor, 2007)

Comparing the computation with "ignoring uncertainty":

Suppose reward $\approx \mathcal{N}\left(\mu_{R}, \Theta_{R}\right)$ and q is initial distribution on states.

$$
\begin{array}{cc}
\max _{x \in \mathbb{R}^{|S|}|A| A \mid} & \sum_{a} x_{a}^{\top} \mu_{R}-f(\rho)\left\|\sum_{a} x_{a}^{\top} \Theta_{R}^{\frac{1}{2}}\right\|_{2} \\
\text { subject to } & \sum_{a} x_{a}^{\top}=q^{\top}+\sum_{a} \gamma x_{a}^{\top} P_{a} \\
& x_{a}^{\top} \geq 0, \quad \forall a \in A .
\end{array}
$$

Ignoring uncertainty leads to the same problem excluding the red term.

A Heuristic

Uncertainty in both transitions and rewards

So we can look at the maximization problem.

$$
\begin{gathered}
\text { Maximize } \text { policy } \pi \mathbb{E}_{\text {models }}\left[\mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t}\right]\right] \\
\text { equivalent to : } \\
\text { Maximize } \pi \mathbb{E}_{\text {models }}\left[\left(I-\gamma P_{\pi}^{\text {model }}\right)^{-1} R_{\pi}^{\text {model }}\right]
\end{gathered}
$$

where $P_{\pi}^{\text {model }}$ and $R_{\pi}^{\text {model }}$ are transition probabilities and rewards when using π and following the model.

Non-linear expression inside the expectation \Rightarrow problem is tough.

Fixed Policy

Can use second order approximation of $\left(I-\gamma P_{\pi}^{\text {model }}\right)^{-1}$.
Approximation is good because most third order terms cancel out.
Can obtain (Mannor, Simester, Sun and Tsitsiklis, 2006): Expressions for the bias and variance estimates

$$
\text { Bias }=\left(I-\gamma \hat{P}_{\pi}\right)^{-1} \hat{R}_{\pi}-\mathbb{E}_{\text {models }}\left[\left(I-\gamma P_{\pi}^{\text {model }}\right)^{-1} R_{\pi}^{\text {model }}\right]
$$

Validated on data

Frequentist approach:
Similar bias and variance estimates
CLT like results

Optimization: More Than a Heuristic

Theorem 2 (Delage and Mannor 07) If one solves:

$$
\max _{\pi} \mathbb{E}_{\text {models }} \quad[\text { Nominal problem }+ \text { Second order terms] }
$$

solution is o $\left(1 / \sqrt{\rho \#_{\text {minimal count }}}\right)$ away from the chance-constrained MDP with risk ρ.

Problem is tractable using modern solvers for $\approx 1,000$ states.

Results I

Machine replacement problem (cost minimization)

Results II

Results III

Results IV

Agenda

Background and context

Parameter uncertainty: Should we care?

The Bayesian approach

Gaussian processes value estimation

Gaussian Processes Value Estimation

But what if we have a big state space?
Consider a fixed policy π.
The discounted return starting at $s_{0}=s$

$$
D^{\pi}(s)=\sum_{i=0}^{\infty} \gamma^{i} R\left(s_{i}, a_{i}\right)
$$

Therefore:

$$
v^{\pi}(s)=\mathbb{E}_{\text {inherent }}\left[D^{\pi}(s)\right]
$$

A simulation problem: We observe rewards and states one by one and want to estimate v^{π}.

Monte-Carlo?

Classical approach: look for the value function $v^{\pi}(s)$:

$$
D^{\pi}(s)=v^{\pi}(s)+\Delta V^{\pi}(s)
$$

Where to look?

Our approach (Parameter uncertainty): the value is also a random variable:

$$
D^{\pi}(s)=V^{\pi}(s)+\Delta V^{\pi}(s)
$$

Value function $v^{\pi}(s)=\mathbb{E}_{\text {models }}\left[V_{\text {model }}^{\pi}(s)\right]$

By assuming a Gaussian structure on V^{π} we can compute v^{π}.

A Generative Model for the Value

The generative model:

$$
\begin{aligned}
R\left(s_{t}, a_{t}\right) & =V\left(s_{t}\right)-\gamma V\left(s_{t+1}\right)+N\left(s_{t}, s_{t+1}\right) \\
& =H\left(s_{t}, s_{t+1}\right) V+N\left(s_{t}, s_{t+1}\right)
\end{aligned}
$$

H is a linear integral operator defined by:

$$
H\left(s, s^{\prime}\right) V=\int d \mathbf{x}\left(\delta(\mathbf{x}-s)-\gamma \delta\left(\mathbf{x}-s^{\prime}\right)\right) V(x)
$$

Goal:

Find the posterior distribution of $V(\cdot)$, given a sequence of observed states and rewards

The Prior

Without seeing anything assume $V^{\pi}(s)$ is a Gaussian process.
Reminder: A Gaussian process is identified by expectation and covariance; its marginal is a Gaussian

$$
\begin{aligned}
\mathbb{E}_{\text {prior }}\left[V^{\pi}(s)\right] & =0 \\
\operatorname{Cov}_{\text {prior }}\left[V^{\pi}\left(s, s^{\prime}\right)\right] & =\mathbb{E}_{\text {prior }}\left[V^{\pi}(s) V^{\pi}\left(s^{\prime}\right)\right]=k\left(s, s^{\prime}\right),
\end{aligned}
$$

where $k\left(s, s^{\prime}\right)$ is symmetric, positive definite: A Mercer kernel. (ML blockbuster - support vector machines, kernel regression, etc.) Indicates prior similarity.
ΔV^{π} is assumed white IID
Can define the process for any space as long as k is defined.

Obtaining a Posterior I

With some algebra:

$$
\begin{aligned}
& R\left(s_{t}\right)=V\left(s_{t}\right)-\gamma V\left(s_{t+1}\right)+N\left(s_{t}, s_{t+1}\right) \\
& N\left(s_{t}, s_{t+1}\right) \triangleq \Delta V\left(s_{t}\right)-\gamma \Delta V\left(s_{t+1}\right)
\end{aligned}
$$

Obtaining a Posterior II

Problem becomes:

$$
R_{t-1}=\mathbf{H}_{t} V_{t}+N_{t}
$$

where $R_{t}=\left(R\left(s_{0}\right), \ldots, R\left(s_{t}\right)\right)^{\top}, N_{t}=\left(N\left(s_{0}\right), \ldots, N\left(s_{t-1}\right)\right)^{\top}$, $V_{t}=\left(V\left(s_{0}\right), \ldots, V\left(s_{t}\right)\right)^{\top}$, and

$$
\mathbf{H}_{t}=\left[\begin{array}{ccccc}
1 & -\gamma & 0 & \ldots & 0 \\
0 & 1 & -\gamma & \ldots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & \ldots & 1 & -\gamma
\end{array}\right]
$$

N_{t} is colored \Rightarrow a non-standard latent variable computation

Obtaining a Posterior III

After observing T samples (for every s):

$$
v^{\pi}(s)=\mathbb{E}_{\text {posterior }}\left[V^{\pi}(s)\right]=\sum_{t=1}^{T} k\left(s_{t}, s\right) \alpha_{t}
$$

(expressions for covariance available too).

If kernel behaves well, can truncate sum using a dictionary

$$
v^{\pi}(s)=\mathbb{E}_{\text {posterior }}\left[V^{\pi}(s)\right]=\sum_{m=1}^{\text {dictionary size }} k\left(s_{m}, s\right) \alpha_{m}
$$

Efficient (temporal-difference) recursive algorithm

Some Theory

Consistency result: Can get to the true value function with enough data.
"A grain of truth theorem"
Can be easily used for exploration

Policy improvement: rollout, slow policy improvement, policy gradients (theory lacking)

Learning is not based on decreasing learning rates

Frequentist: Can re-derive as a least squares solution

Wrap-up

Parameter uncertainty is a big deal in real-world problems

Small models: Can consider distribution over models

Large models: Can use Gaussian processes to model value process

Does it really work?

