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Context
Machine Learning: Improve performance with more data
Control/Optimization: Find the best solution (policy)

Statistics : Understand the quality of the solution

Data mining: Find structure in data



Example |: Laptop Power Management
A long-term project with Intel Research
Objective: Save power without annoying the user

Given: Traces of user behavior (120 users x 3 months ~ 30 years)
Record every 1 second

1B points, each ~100 dimensional

Current state-of-the-art: timeout policies

Validating new policies is not trivial



Example II: Mail-order Catalog
Catalogs can be shipped every ~2 weeks

Each catalog costs ~ 1%

~ 2M customers over 6 years (=~ 160M observations)
Which mailing policy to use?

Obijectives:
Short term: Making customers purchase
Long term: Retaining customers



Decision Making

Classical decision making:

| know where | am

| know what | can do

| know what will happen (or at least the distribution of future events)



Decision Making

Real-world decision making

| know where | am

| know what | can do

| am not sure what is the distribution of the reward and future events



Learning = Planning
Planning and learning spectrum
Different knowledge/information models
Small/large state spaces
Simulation/observation

Tractability is key

Off/on policy



Markov Decision Processes

A simple and popular model (MDP)

Ingredients: {
Decision
K
1. State space S maKer

<

2. Action space A
System
3. Reward R (a random variable) St St41

4. Transition probability P(s'|s, a).

Dynamics: St — Ay — Ry — Syq

Ry

St

observes



MDPs: The Objective

Objective: maximize (over all policies)

o
Value function = v(s) =E" | ) ’Yth‘SO = s]

t=0

where v < 1
There exists an optimal stationary and deterministic policy.

™. S— A

Algorithmically easy: linear programming, policy iteration, value iteration,
dynamic programming



Uncertainties

A single trajectory: inherent uncertainty:
A single customer

Aggregate trajectories: parameter uncertainty:
Average across all customers

Different risk attributes
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Parameter Uncertainty

We always have uncertainty in the parameters

1. 1 don’t have a model - sample from data
2. | know | don’t know (part of the model)

3. Things change with time

Probabilistic uncertainty << Non-probabilistic uncertainty
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Another Source of Uncertainty

Very high dimensional observation spaces
Examples:

Power management

Mail-order catalog problem

Manageable MDPs are small: =~ 10,000 states

Actual MDP represents a simplification - model reduction
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Model Recap

We know: States (S) and actions (\A)

But rewards (R) and transitions (P) are not known (exactly)
If S Is not known? = A different talk

Basic question: What are we going to do?

But first - should we care?
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Variance: lllustration

Catalog Circulation Problem

Womens clothing retailer

1.7 million customers x 4-6 years of mailing/purchase history

MDP construction: Recency, Frequency and Monetary Value
64 states: Quartiles (43)

Not a classification problem - need dynamics
250 Sub-samples: 657,000 observations in each

“True” model: All 1.7 million customers
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Value Function: True vs. Estimated
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The Control Problem

Optimization induces additional bias

(Jensen’s: X1, Xo, ..., Xn =~ Ber(1/2), X; estimates the mean,
1/2 = max,{E[X;]} < E[max; X;].)

How big is this bias?

Recipe:

1. Divide data to calibration and validation set
2. Solve on calibration

3. Evaluate on validation

4. Estimate the magnitude of bias
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The Control Problem: Bias
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The Control Problem: Sub-optimality
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Solutions Needed

0. Ignore uncertainty: hope for the best (standard approach in ML/OR)

1. Robustify: expect the worst

2. A Bayesian approach: obtain a probability over models

3. Risk aware approach: optimize performance “most of the time”
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The Bayesian Approach |

Suppose we have a prior on R and P. That is we believe that
R(s,a) ~N: P(z;a) = C(oz)e_(w_o‘mea”)Q/o‘UW

P(-|s,a) ~ Dirichlet: Pr(z|a) = C(a)M7_ 2% "

After observing data we update our belief

We maintain probability over models

Magic: If we start from R(s,a) ~ N and P(:|s,a) ~ Dirichlet we main-
tain the form after the update.

23



The Bayesian Approach Il

We have a probability over models:

Emodels and Prmodels

We can now consider V™ (s) = E™ >°7° 5 ~*R; as a random variable

For a given 7 and a current belief we can ask what is:

©.@)
Emodels [V (5)] = Emodels |E” Z Vth
t=0

Mail order catalog: aggregation of customers
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The Bayesian Approach Il

We can also ask (percentile optimization):
max g
policy w,geR
S.t. Prmodeis(V™e >g) > p

Value-at-risk: p is the risk parameter.

It turns out that solving the percentile optimization is:
1. NP-hard in general.

2. NP-hard even Iif transitions are known.

But: For Gaussian reward parameters, problem is polytime.
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Theorem 1 Percentile optimization is solvable by 2nd order cone program-
ming if there is Gaussian uncertainty in the reward.

(Delage and Mannor, 2007)
Comparing the computation with “ignoring uncertainty”:

Suppose reward ~ N (up, © ) and q is initial distribution on states.

1
max Sz ur— f(P)| Xeze O30
2eRISIXIA]

subjectto Y, z) =q' + >,z P,
r) >0, VacA.

Ignoring uncertainty leads to the same problem excluding the red term.
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A Heuristic
Uncertainty in both transitions and rewards

So we can look at the maximization problem.

Maximize pojicy rlEmodels [EW [nggo ’Yth} }
equivalentto :
Maximize rEmodels [([ _ ~pmodely—1 pmodel }

where PModel and RModel gre transition probabilities and rewards when
using 7 and following the model.

Non-linear expression inside the expectation = problem is tough.
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Fixed Policy
Can use second order approximation of (I — ~ypmodely—1,
Approximation is good because most third order terms cancel out.

Can obtain (Mannor, Simester, Sun and Tsitsiklis, 2006):
Expressions for the bias and variance estimates

Bias = (I — ’ypw)_lﬁﬁ — Emodels [(I . ,prOdel)—lR;nOdel

Validated on data

Frequentist approach:
Similar bias and variance estimates

CLT like results
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Optimization: More Than a Heuristic

Theorem 2 (Delage and Mannor 07) If one solves:

mMax Emodels [Nominal problem 4 Second order terms]

solution is o(1/+v/p# minimal count.) away from the chance-constrained MDP
with risk p.

Problem is tractable using modern solvers for ~ 1, 000 states.

29



Results |

Machine replacement problem (cost minimization)

N(100,800)
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Results Il
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Results I
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Results IV
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Gaussian Processes Value Estimation
But what if we have a big state space?
Consider a fixed policy .
The discounted return starting at sgp = s

OO .

D™(s) = > ~+'R(si,a;)

i=0

Therefore:

v (s) = IEinherent[D7T(=‘3)]

A simulation problem: We observe rewards and states one by one and
want to estimate v™.

Monte-Carlo?
35



Classical approach: look for the value function v™(s):

D"(s) = v"(s) + AV"(s)

Where to look?

Our approach (Parameter uncertainty): the value is also a random variable:
D™(s) = V" (s) + AV"(s)

By assuming a Gaussian structure on V™ we can compute v™.
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A Generative Model for the Value

The generative model:

R(s¢, at)

V(st) = vV (sg41) + N(st,8¢41)
H(st,5441)V 4+ N(s¢t,5441)

H is a linear integral operator defined by:

H(s,s')V = /dx (5(x — 5) —78(x — ")) V()

Goal:

observed states and rewards

Find the posterior distribution of V' (-), given a sequence of
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The Prior

Without seeing anything assume V7 (s) is a Gaussian process.

Reminder: A Gaussian process is identified by expectation and covariance;
its marginal is a Gaussian

Eprior[vw(s)]
CoVprior[V" (s )]

0
Eprior[vw(s)vw(sl)] = k(s, S,),

where k(s, s’) is symmetric, positive definite: A Mercer kernel.
(ML blockbuster - support vector machines, kernel regression, etc.)
Indicates prior similarity.

AVTis assumed white IID

Can define the process for any space as long as k is defined.
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Obtaining a Posterior |

With some algebra:

R(st) =V (st) =7V (si41) + N(st, 8¢41)
N (s, 8441) = AV (s) = YAV (s441)

AV(SO)

—————

[ f/ 01
R(SJ*/R(S: .. .. R \O




Obtaining a Posterior |l

Problem becomes:

Ry 1 =HVi + Ny

where Ry = (R(sg),...,R(s:)) ", Ny = (N(sp),...,N(s;—1)) ',
Vi = (V(sg),...,V(sy)) ', and

(1 —y 0 ... 0O |
I, = O 1 —y ... O
0 0 ... 1 —»|

N¢ is colored = a non-standard latent variable computation



Obtaining a Posterior Il

After observing T' samples (for every s):

T
v (s) = IE4j4|oosterior[v7r(S)] — Z k(st,s)ay
t=1

(expressions for covariance available too).

If kernel behaves well, can truncate sum using a dictionary

dictionary size
v (s) = IEposterior[V7T(=9)] — Z k(sm, s)am

m=1

Efficient (temporal-difference) recursive algorithm
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Some Theory

Consistency result: Can get to the true value function with enough data.
“A grain of truth theorem”

Can be easily used for exploration

Policy improvement: rollout, slow policy improvement, policy gradients (the-
ory lacking)

Learning is not based on decreasing learning rates

Frequentist: Can re-derive as a least squares solution
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Wrap-u P
Parameter uncertainty is a big deal in real-world problems
Small models: Can consider distribution over models

Large models: Can use Gaussian processes to model value process

Does it really work?
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