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Context

Machine Learning: Improve performance with more data

Control/Optimization: Find the best solution (policy)

Statistics : Understand the quality of the solution

Data mining: Find structure in data
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Example I: Laptop Power Management

A long-term project with Intel Research

Objective: Save power without annoying the user

Given: Traces of user behavior (120 users × 3 months ≈ 30 years)
Record every 1 second
1B points, each ≈100 dimensional

Current state-of-the-art: timeout policies

Validating new policies is not trivial
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Example II: Mail-order Catalog

Catalogs can be shipped every ≈2 weeks

Each catalog costs ≈ 1$

≈ 2M customers over 6 years (≈ 160M observations)

Which mailing policy to use?

Objectives:
Short term: Making customers purchase
Long term: Retaining customers
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Decision Making

Classical decision making:

I know where I am

I know what I can do

I know what will happen (or at least the distribution of future events)
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Decision Making

Real-world decision making

I know where I am

I know what I can do

I am not sure what is the distribution of the reward and future events
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Learning = Planning

Planning and learning spectrum

Different knowledge/information models

Small/large state spaces

Simulation/observation

Tractability is key

Off/on policy
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Markov Decision Processes

A simple and popular model (MDP)

Ingredients:

1. State space S

2. Action space A

3. Reward R (a random variable)

4. Transition probability P (s′|s, a).

Dynamics: St → At → Rt → St+1

System

Decision
maker

at Rt

St

observes

St St+1
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MDPs: The Objective

Objective: maximize (over all policies)

Value function = v(s) = E
π





∞
∑

t=0

γtRt

∣

∣

∣

∣

S0 = s





where γ < 1

There exists an optimal stationary and deterministic policy.

π : S → A

Algorithmically easy: linear programming, policy iteration, value iteration,
dynamic programming
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Uncertainties

A single trajectory: inherent uncertainty:
A single customer

Aggregate trajectories: parameter uncertainty:
Average across all customers

Different risk attributes
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Parameter Uncertainty

We always have uncertainty in the parameters

1. I don’t have a model - sample from data

2. I know I don’t know (part of the model)

3. Things change with time

Probabilistic uncertainty ⇔ Non-probabilistic uncertainty
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Another Source of Uncertainty

Very high dimensional observation spaces

Examples:
Power management
Mail-order catalog problem

Manageable MDPs are small: ≈ 10,000 states

Actual MDP represents a simplification - model reduction
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Model Recap

We know: States (S) and actions (A)

But rewards (R) and transitions (P ) are not known (exactly)

If S is not known? ⇛ A different talk

Basic question: What are we going to do?

But first - should we care?
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Variance: Illustration

Catalog Circulation Problem

Womens clothing retailer
1.7 million customers × 4-6 years of mailing/purchase history

MDP construction: Recency, Frequency and Monetary Value
64 states: Quartiles (43)

Not a classification problem - need dynamics

250 Sub-samples: 657,000 observations in each

“True” model: All 1.7 million customers
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Value Function: True vs. Estimated
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The Control Problem

Optimization induces additional bias

(Jensen’s: X1, X2, . . . , Xn ≈ Ber(1/2), X̂i estimates the mean,
1/2 = maxi{E[X̂i]} < E[maxi X̂i].)

How big is this bias?

Recipe:
1. Divide data to calibration and validation set
2. Solve on calibration
3. Evaluate on validation
4. Estimate the magnitude of bias
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The Control Problem: Bias
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The Control Problem: Sub-optimality
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Solutions Needed

0. Ignore uncertainty: hope for the best (standard approach in ML/OR)

1. Robustify: expect the worst

2. A Bayesian approach: obtain a probability over models

3. Risk aware approach: optimize performance “most of the time”
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The Bayesian Approach I

Suppose we have a prior on R and P . That is we believe that
R(s, a) ∼ N : P (x;α) = C(α)e−(x−αmean)2/αvar

P (·|s, a) ∼ Dirichlet: Pr(x|α) = C(α)Πn
i=1x

αi−1
i

After observing data we update our belief

We maintain probability over models

Magic: If we start from R(s, a) ∼ N and P (·|s, a) ∼ Dirichlet we main-
tain the form after the update.
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The Bayesian Approach II

We have a probability over models:
Emodels and Prmodels

We can now consider V π(s) = Eπ ∑∞
t=0 γtRt as a random variable

For a given π and a current belief we can ask what is:

Emodels [V
π(s)] = Emodels



E
π





∞
∑

t=0

γtRt









Mail order catalog: aggregation of customers
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The Bayesian Approach III

We can also ask (percentile optimization):

max
policy π,g∈R

g

s.t. Prmodels (V
πe > g) ≥ ρ

Value-at-risk: ρ is the risk parameter.

It turns out that solving the percentile optimization is:

1. NP-hard in general.

2. NP-hard even if transitions are known.

But: For Gaussian reward parameters, problem is polytime.
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Theorem 1 Percentile optimization is solvable by 2nd order cone program-
ming if there is Gaussian uncertainty in the reward.

(Delage and Mannor, 2007)

Comparing the computation with “ignoring uncertainty”:

Suppose reward ≈ N (µR,ΘR) and q is initial distribution on states.

max
x∈R|S|×|A|

∑

a x⊤a µR − f(ρ)‖
∑

a x⊤a Θ
1
2
R‖2

subject to
∑

a x⊤a = q⊤ +
∑

a γx⊤a Pa

x⊤a ≥ 0 , ∀ a ∈ A.

Ignoring uncertainty leads to the same problem excluding the red term.
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A Heuristic

Uncertainty in both transitions and rewards

So we can look at the maximization problem.

Maximize policy πEmodels

[

Eπ
[

∑∞
t=0 γtRt

] ]

equivalent to :

Maximize πEmodels

[

(I − γPmodel
π )−1Rmodel

π

]

where Pmodel
π and Rmodel

π are transition probabilities and rewards when
using π and following the model.

Non-linear expression inside the expectation ⇛ problem is tough.
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Fixed Policy

Can use second order approximation of (I − γPmodel
π )−1.

Approximation is good because most third order terms cancel out.

Can obtain (Mannor, Simester, Sun and Tsitsiklis, 2006):
Expressions for the bias and variance estimates

Bias = (I − γP̂π)
−1R̂π − Emodels

[

(I − γPmodel
π )−1Rmodel

π

]

Validated on data

Frequentist approach:
Similar bias and variance estimates
CLT like results
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Optimization: More Than a Heuristic

Theorem 2 (Delage and Mannor 07) If one solves:

max
π

Emodels [Nominal problem + Secondorder terms]

solution is o(1/
√

ρ#minimal count) away from the chance-constrained MDP
with risk ρ.

Problem is tractable using modern solvers for ≈ 1,000 states.
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Results I

Machine replacement problem (cost minimization)
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Results II
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Results III
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Results IV
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Gaussian Processes Value Estimation

But what if we have a big state space?

Consider a fixed policy π.

The discounted return starting at s0 = s

Dπ(s) =
∞
∑

i=0

γiR(si, ai)

Therefore:

vπ(s) = Einherent[D
π(s)]

A simulation problem: We observe rewards and states one by one and
want to estimate vπ.

Monte-Carlo?
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Classical approach: look for the value function vπ(s):

Dπ(s) = vπ(s) + ∆V π(s)

Where to look?

Our approach (Parameter uncertainty): the value is also a random variable:

Dπ(s) = V π(s) + ∆V π(s)

Value function vπ(s) = Emodels

[

V π
model(s)

]

By assuming a Gaussian structure on V π we can compute vπ.
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A Generative Model for the Value

The generative model:

R(st, at) = V (st) − γV (st+1) + N(st, st+1)

= H(st, st+1)V + N(st, st+1)

H is a linear integral operator defined by:

H(s, s′)V =
∫

dx
(

δ(x − s) − γδ(x − s′)
)

V (x)

Goal:

Find the posterior distribution of V (·), given a sequence of
observed states and rewards
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The Prior

Without seeing anything assume V π(s) is a Gaussian process.

Reminder: A Gaussian process is identified by expectation and covariance;
its marginal is a Gaussian

Eprior[V
π(s)] = 0

Covprior[V
π(s, s′)] = Eprior[V

π(s)V π(s′)] = k(s, s′),

where k(s, s′) is symmetric, positive definite: A Mercer kernel.
(ML blockbuster - support vector machines, kernel regression, etc.)
Indicates prior similarity.

∆V π is assumed white IID

Can define the process for any space as long as k is defined.
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Obtaining a Posterior I

With some algebra:

R(st) = V (st) − γV (st+1) + N(st, st+1)

N(st, st+1) , ∆V (st) − γ∆V (st+1)

V(s )∆ V(s )∆V(s )∆ V(s )∆V(s   )∆

R(s )

V(s ) V(s )

1

1

R(s )

V(s )

1

R(s )

V(s )
0

0

0

2

2

t

t

t

R(s   )

V(s   )
t−1

t−1

t−1

.   .   .   .  
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Obtaining a Posterior II

Problem becomes:

Rt−1 = HtVt + Nt

where Rt = (R(s0), . . . , R(st))
⊤, Nt =

(

N(s0), . . . , N(st−1)
)⊤,

Vt = (V (s0), . . . , V (st))
⊤ , and

Ht =











1 −γ 0 . . . 0
0 1 −γ . . . 0
... ...
0 0 . . . 1 −γ











.

Nt is colored ⇒ a non-standard latent variable computation
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Obtaining a Posterior III

After observing T samples (for every s):

vπ(s) = Eposterior[V
π(s)] =

T
∑

t=1

k(st, s)αt

(expressions for covariance available too).

If kernel behaves well, can truncate sum using a dictionary

vπ(s) = Eposterior[V
π(s)] =

dictionary size
∑

m=1

k(sm, s)αm

Efficient (temporal-difference) recursive algorithm
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Some Theory

Consistency result: Can get to the true value function with enough data.
“A grain of truth theorem”

Can be easily used for exploration

Policy improvement: rollout, slow policy improvement, policy gradients (the-
ory lacking)

Learning is not based on decreasing learning rates

Frequentist: Can re-derive as a least squares solution
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Wrap-up

Parameter uncertainty is a big deal in real-world problems

Small models: Can consider distribution over models

Large models: Can use Gaussian processes to model value process

Does it really work?
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