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Outline of the presentation

• Background on POMDPs

• PSRs: What is this all about?

• PSRs vs. other dynamic models

• Discovery, learning and planning in PSRs
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Background on POMDPs

To establish the notation, an MDP is a tuple (X,A,T, r, γ) where

• X is the state-space;

• A is the action-space;

• T represents the transition probability model;

• r represents the reward function;

• γ represents the discount factor.

At all times, the decision-maker has access to the state Xt of the
process.
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Partially Observable MDPs (POMDPs)

• In a POMDP the state Xt is not accessible;

• The decision-maker receives an observation Zt that depends on the
state Xt and on the previous action At−1;

• The observations Zt take values in a finite set Z;

• The dependence of Zt on Xt and At−1 is represented by an
observation model O:

P [Zt = z | Xt = x,At = a] = Oa(x, z).

The POMDP model is can be represented as a tuple
(X ,A,Z,T,O, r, γ).
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Optimality in POMDPs

• The decision-maker should still determine a policy π maximizing the
expected total discounted reward;

• Since the state Xt is not accessible, the policy can no longer be
defined as a mapping π : X −→ A;

• Instead, given a model of the POMDP, the decision-maker can
maintain at each time t a belief bt over the state-space:

bt(x) = P [Xt = x | Ht] ,

where Ht is the history up to time t;

• This belief works as a (continuous) internal state for the
decision-maker.
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Optimality in POMDPs (cont.)

• Value-functions can now be defined in terms of beliefs:

V (b, {At}) = E

[ ∞∑
t=0

γtRt | b0 = b

]
;

• The optimal value function verifies a Bellman-like equation:

V ∗(bt) = max
a∈A

∑
x∈X

bt(x)

[
r(x, a) + γ

∑
y∈X

Ta(x, y)
∑
z∈Z

Oa(y, z)V ∗(bt+1)

]

• The optimal policy is a mapping π∗ : B −→ A.
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Algorithms for POMDPs

• POMDPs are PSPACE-hard for finite-horizon[10];

• Exact methods proceed by incrementally “simplifying” the
representation of V ∗t [3, 6];

• Function approximation can also be used with RL methods to
approximate V ∗ [7];

• Many other approximated method are available (see [1, 2]).
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PSRs: What is this all about?

• PSRs were introduced in [8] and further explored in [12, 13];

• Predictive state representations (PSRs) provide a different
dynamical models;

• Unlike POMDPs, PSRs rely solely on observable quantities;

• Building PSR models from observed data should, therefore, be more
reliable;

• As we will see, PSRs have larger representational power than other
dynamic models.
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Futures

We now define some nomenclature:

• A dynamic system generates sequences of observations and actions;

 

Zt Zt + 1 At + 1 At 

• The future of the system is any sequence of action-observation pairs
from the current time;

• The system can thus be seen as a probability distribution over
“possible futures”;

• A particular finite sequence of action-observation pairs will be
referred as a test.
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Futures (cont.)

• Given a k-length test T = (a1, z1, a2, z2, . . . , ak, zk), a prediction for
T is the probability of observing z1, . . . , zk given that the first k
actions are a1, . . . , ak, i.e.,

P(T ) = P [Z1 = z1, Z2 = z2, . . . , Zk = zk | A1 = a1, A2 = a2, . . . , Ak = ak] ;

• The set of all possible tests for a system is countable;

• It is possible to order the possible tests T1, T2, . . . by increasing
order of length;

• We define the system dynamics vector, d, as an infinite line vector
with ith component di = P(Ti).
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Histories

• A history of the system is a sequence of occurred action-observation
pairs;

• We can define history-conditional predictions as

P(T | H) = P [Z1 = z1, . . . , Zk = zk | H, A1 = a1, . . . , Ak = ak] ;

• We now define the system dynamics matrix, D, as an infinite matrix
with ijth component Dij = P(Tj | Hi):

Dij = P(Tj | Hi) =
P(Hi, Tj)

P(Hi)
.
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The system dynamics matrix D

The system dynamics matrix can be visualized as

T1 . . . Tn . . .

H1 = ∅ P(T1) . . . P(Tn) . . .

H2 P(T1 | H2) . . . P(Tn | H2) . . .
...

...
...

Hm P(T1 | Hm) . . . P(Tn | Hm) . . .
...

...
...
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Linear dimension of a system

• The linear dimension of a system is the rank of its dynamics matrix;

• In a system with linear dimension k, D has certainly k linearly
independent columns;

• Let Q = {q1, q2, . . . , qk} be any such k columns;

• The tests q1, . . . , qk are known as core tests;

• The submatrix obtained from D by considering only the core tests is
denoted D(Q);

The state of a linear PSR given a history H is given by the (line)
vector

P(Q | H) =
[
P(q1 | H), . . . ,P(qk | H)

]
.
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State updates in linear PSRs

• For any test T , there is a parameter vector mT such that

P(T | H) = P(Q | H)mT ;

• Given a new action-observation pair, the state of the PSR can be
updated componentwise as

P(qi | H, a, z) =
P(a, z, qi | H)
P(a, z | H)

=
P(Q | H)m(a,z,qi)

P(Q | H)m(a,z)

The parameters of the linear PSR are the vectors m(a,z,qi) and
m(a,z), with a ∈ A, z ∈ Z and i = 1, . . . , k, in a total of

(k + 1) |A| |Z| k-vectors.
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Nonlinear PSRs

• The state of the linear PSR allows to determine the prediction for
any test T : it is a sufficient statistic for the history;

• It may happen that a set of tests C = {c1, . . . , cm}, with m < k

such that the corresponding predictions are nonlinear sufficient
statistics for the history, i.e.,

P(T | H) = fT (P(C | H))

for some nonlinear function fT independent of H;

• In this case, the state of the PSR is the vector P(C | H) and can be
updated componentwise as

P(ci | H, a, z) =
P(a, z, ci | H)
P(a, z | H)

=
f(a,z,ci)(P(C | H))
f(a,z)(P(C | H))

.
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PSRs vs. other dynamic models

The results presented in this section can all be found in [13].
Theorem 1. A dynamical system described by a POMDP with k
states has linear dimension no greater than k.

Intuition:

• The beliefs work as the POMDP states (sufficient statistics for the
history);

• The belief for a k-state POMDP is a k-vector;

• The system dynamics matrix D can be determined by noticing that,
for a test T = (a1, z1, . . . , ak, zk),

P(T | H) = b(H) Ta1diag (Oa1 (·, z1)) · · ·Takdiag (Oak (·, zk))1︸ ︷︷ ︸
mT

.
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PSRs vs. other dynamic models (cont.)

Corollary 2. A dynamical system described by a HMM with k states
has linear dimension no greater than k.

Theorem 3. A dynamical system described by a n-order Markov
model has linear dimension k ≤ (|A| |Z|)n.
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PSRs vs. other dynamic models (cont.)

• In a POMDP, all parameter vectors mT are componentwise positive;

• In a general system, this need not happen;

Therefore,

Theorem 4. There are dynamical systems with finite linear
dimension that cannot be modelled by any finite POMDP.
Corollary 5. There are dynamical systems with finite linear
dimension that cannot be modelled by any HMM.
Corollary 6. There are dynamical systems with finite linear
dimension that cannot be modelled by any n-order Markov model.

August 2nd, 2007 Slide 31



Slide 21

'

&

$

%

Outline of the presentation

• Background on POMDPs

• PSRs: What is this all about?

• PSRs vs. other dynamic models

• Discovery, learning and planning in PSRs

Slide 22

'

&

$

%

Discovery, learning and planning in PSRs

Given a dynamic system with system dynamics matrix D, 3 problems
immediately arise when dealing with PSRs:

1. How to choose the core tests qi (discovery)?

2. How to suitably determine the parameters m(a,z) and m(a,z,qi)

(learning)?

3. How to plan using the PSR model (planning)?

I now provide some references on the three above problems and sketch
the main ideas.
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Discovery in PSRs

• Discovery deals with the problem of building good core tests;

• The predictions of these tests will constitute the state of the PSR;

• Few algorithms address the problem of discovery;

• In [4], the Analytic Discovery and Learning (ADL) algorithm is
proposed to determine the core tests if P(T | H) can be determined
for all T and H;

• This algorithm iteratively builds submatrices of D until two such
consecutive submatrices yield the same rank.
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Discovery in PSRs (cont.)

• To alleviate the assumption on the computability of P(T | H), the
authors consider dynamical systems with reset;

• This reset is used to generate iid samples of P(T | H and estimate
this value.

• A related approach is followed in [9].
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Learning in PSRs

• Learning deals with the problem of estimating the PSR parameters;

• The paper in [4] also uses the data sampled from the system to
estimate the PSR parameters, by inverting the state-update
equation;

• In [14], the need for resets is alleviated by considering suffixes in the
observed histories;

• The papers [9, 13] use approximated gradient ascent techniques to
estimate the PSR parameters;

• In [11], a modified PSR model is considered and SVD analysis is
used to learn the modified model parameters.
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Planning in PSRs

• Planning deals with the problem of optimal policy determination in PSRs;

• To address planning in PSRs, a reward structure must be appended to the PSR
model;

• This is done by considering a reward to be issued together with each observation;

• Tests are now sequences T = (a1, (z1, r1), a2, (z2, r2), . . . , ak, (zk, rk)), with ri

taking values in some finite set R ⊂ R;

• Similarly, histories are now sequences
H = (a1, (z1, r1), a2, (z2, r2), . . . , ak, (zk, rk));

• All other concepts carry on without modification.
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Planning in PSRs (cont.)

• With this formulation, it is possible to define an expected immediate reward
R(H, a) as

R(H, a) =
∑
r∈R

rP [r | H, a] =

= P(Q | H)
∑
r∈R

r
∑
z∈Z

m(a,(r,z)) = = P(Q | H)m̂a;

• The immediate expected reward is a linear function of the state vector P(Q | H);

• With this formalism, a value function can be defined with similar properties to
the optimal value function in POMDPs;

• POMDP solution methods (exact and approximate) can then be applied
straightforwardly to PSRs [5].
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