
'

&

$

%

Q-learning with
linear function approximation

Francisco S. Melo and M. Isabel Ribeiro
Institute for Systems and Robotics

[fmelo,mir]@isr.ist.utl.pt

Conference on Learning Theory,
COLT’2007

June 14th, 2007 Slide 1



'

&

$

%

Outline of the presentation

• Motivation and problem formulation

• Related work

• Q-learning with LFA

• Addressing partial observability

• Concluding remarks

June 14th, 2007 Slide 2



'

&

$

%

Motivation

• Markov decision processes (MDPs) provide useful models to address
sequential decision problems;

• Many powerful methods are available (e.g., TD(λ), Q-learning,
SARSA).

However...

• Many such methods rely on explicit representations of the
state-space;

• Many interesting problems have a state-space unsuited for explicit
representation (e.g., infinite or partially observable);
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Problem formulation

• In this paper we address Markov decision problems with infinite
state-space or partial observability ;

• We propose a modified version of Q-learning that accomodates
MDPs with infinite state-space;

• To this end, we make use of linear function approximation to
achieve compact representation;

• We identify conditions under which this same algorithm can be
applied to partially observable scenarios.
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Some notation

We represent a MDP as a tuple (X,A,P, r, γ) where

• X and A are the state and action-spaces, respectively;

• P is the transition probability kernel

Pa(x, U) = P [Xt+1 ∈ U | Xt = x,At = a] ;

• r : X ×A×X −→ R is the reward function;

• γ is a discount factor.
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Some notation (cont.)

• The agent should choose the sequence of actions {At} maximizing

V ({At} , x) = E

[ ∞∑
t=0

γtRt | X0 = x

]
;

• For the optimal action sequence, the corresponding values verify

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy);

• The optimal Q-function is defined as

Q∗(x, a) =
∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).
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Related work
• Soft-state aggregation methods [4,

9, 11] partition the state-space into
M regions C1, . . . , CM ;

• Each x ∈ X “belongs” to region Ci

with probability pi(x);

• The algorithms consider each Ci as
a “hyper-state” and compute the
corresponding values, θ(i, a);

X
C1

C2

C3 C4

pi(x) = P[x ∈ Ci]

• The optimal Q-function is then approximated as

Q̂(x, a) =
∑

i

θ(i, a)pi(x).
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Related work (cont.)

• Tsitsiklis and Van Roy [12] consider a finite-dimensional function
space V obtained as the linear span of a set of M linearly
independent functions ξ1, . . . , ξM ;

• The authors implement a stochastic approximation algorithm to
determine the fixed point

vθ∗ = PVTδvθ∗ ,

where PV is the orthogonal projection on V and Tδ is the
TD-operator;
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Related work (cont.)

• Convergence is established by showing the algorithm to follow the
trajectories of a globally asymptotically stable ODE

v̇t = PVTδvt − vt.

Tδ

V δ

PVV δ

vθ∗

V

vt+1

vt+2

vt
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Related work (cont.)

• Szepesvári and Smart [10] consider Q-learning with interpolative
function approximation;

• The authors consider a sample-based operator P that projects a
generic function q to a finite-dimensional parameter space by
considering the value of q at a pre-specified set of sample points;

• Combined with an interpolation operator F , this yields a
non-expansive, equipotent operator G = FP;

• The algorithm proceeds by determining the fixed point

qθ∗ = GHqθ∗ ,

where H is the Bellman operator.
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Q-learning with LFA

• Our approach is a combination of that in [12] with the one in [10];

• As in [12], we consider a finite-dimensional function space Q
obtained as the linear span of a set of M linearly independent
functions ξ1, . . . , ξM and implement a stochastic approximation
algorithm to determine the fixed point

qθ∗ = GHqθ∗ ,

where now G is the sample-based projection on Q defined on [10];
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Q-learning with LFA (cont.)

• To ensure that, for a generic function q, G(q) lies in Q, we define
the interpolation operator F from the functions ξi;

• Each sample point is chosen so that one of the functions ξi attains
its maximum value of 1 at that point and require that∑

i |ξi(x, a)| ≤ 1;

• Then, given a parameter vector θ ∈ RM ,

Fθ(x, a) = ξ>(x, a)θ.

• Convergence is established by showing the algorithm to follow the
trajectories of a globally asymptotically stable ODE

q̇t = GHqt − qt.
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Two important remarks

1. In order to establish the convergence of the method by means of an
associated ODE requires the underlying Markov process to be
geometrically ergodic ;

2. Since H is contractive in the sup-norm and G is non-expansive in
that same norm, the combined operator GH is contractive in the
sup-norm. This, in particular, implies that

• The fixed-point qθ∗ of the combined operator GH is a globally
asymptotically stable equilibrium point of the associated ODE;

• The obtained approximation verifies

‖qθ∗ −Q∗‖∞ ≤ 1
1− γ

‖G(Q∗)−Q∗‖∞ .
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Addressing partial observability

A partially observable MDP (POMDP) is a tuple (X ,A,Z,P,O, r, γ)
where

• X , A, P, r and γ are as before;

• Z is the set of possible observations;

• O is the observation probability function

Oa(x, z) = P [Zt+1 = z | Xt+1 = x,At = a] .

We assume X and Z to be finite sets.
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Internal state

• Due to partial observability, the agent no longer accesses the state
Xt of the process;

• The action choice must now depend on the history of past
observations;

• Defining the vector bt to be

bt(x) = P [Xt = x | Ft]

it can be updated using a simple bayesian update [2]

bt+1(y) =
∑

x∈X bt(x)PAt(x, y)OAt(y, Zt+1)∑
x,w∈X bt(x)PAt

(x,w)OAt
(w,Zt+1)
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Internal state (cont.)

• The vector bt translates the belief of the agent on the current state;

• In terms of beliefs, the agent should now choose the sequence of
actions {At} maximizing

V ({At} , b) = E

[ ∞∑
t=0

γtRt | B0 = b

]
;

• For the optimal action sequence, the corresponding values now verify

V ∗(b) = max
a∈A

∑
x,y∈X

b(x)Pa(x, y)

[
r(x, a, y) + γ

∑
z∈Z

Oa(y, z)V ∗(b′a,z)

]
,

where b′a,z is the updated belief given action a and observation z.
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Internal state (cont.)

However...

• The belief vector bt is Markovian in its dependence of the past;

• We can thus define a fully observable MDP (Sn,A, P̄, r̄, γ) from the
(X ,A,Z,P,O, r, γ) where [1]

– Sn is the n− 1-dimensional probability simplex, where n = |X |;
– P̄ is the transition probability kernel

P̄a(b, U) =
∑
z∈Z

∑
x,y∈X

b(x)Pa(x, y)Oa(y, z)IU (b′a,z);

– r̄ is the reward function

r̄(b, a, b′) =
∑

x,y∈X
b(x)Pa(x, y)r(x, a, y).
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QL with LFA in POMDPs

• Exact methods for POMDPs are of little use in all but the smallest
problems [6, 8];

• Since solving a POMDP (X ,A,Z,P,O, r, γ) is equivalent to solving
the MDP (Sn,A, P̄, r̄, γ), we can apply our Q-learning algorithm
with LFA to the MDP (Sn,A, P̄, r̄, γ);

• As seen, we need only guarantee that the underlying process is
geometrically ergodic ;

• We thus conclude with a very simple result: if the MDP
(X,A,P, r, γ) is ergodic and there is one distinguishable state, then
the MDP (Sn,A, P̄, r̄, γ) is geometrically ergodic.
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Concluding remarks

• Error bounds depend on ‖G(Q∗)−Q∗‖∞ – bad approximations may
yield bad policies;

• The choice of a “good approximation” is a topic of current research
[3, 5, 7];

• The algorithm uses a fixed learning policy ; extension to a
θ-dependent policy should be possible, by requiring the dependence
on θ to be smooth;

• The use of a θ-dependent policy suggests that an on-policy version
of the algorithm could probably be derived from our algorithm;

• Although we do not consider them, we belief that the algorith can
easily be modified to accomodate eligibility traces, eventually
improving the obtained error bounds;

June 14th, 2007 Slide 23



'

&

$

%

Concluding remarks (cont.)

• In the partially observable setup, belief tracking requires knowledge
of the dynamic model (transition and observation probabilities); this
is a common assumption in several situations (e.g., robotic tasks);

• The use of learning algorithms and function approximation, even if
relying on belief tracking, may constitute an appealing alternative,
given the complexity of exact methods;

• Finally, requiring one state to be distinguishable is often acceptable
(the goal state is often observable); furthermore, this condition is
sufficient (not necessary) and often simple to check in practice.
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