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Motivation

e Markov decision processes (MDPs) provide useful models to address

sequential decision problems;

e Many powerful methods are available (e.g., TD()\), Q-learning,
SARSA).

However...

e Many such methods rely on explicit representations of the

state-space;

e Many interesting problems have a state-space unsuited for explicit

representation (e.g., infinite or partially observable);
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Problem formulation

In this paper we address Markov decision problems with infinite

state-space or partial observability;

We propose a modified version of ()-learning that accomodates
MDPs with infinite state-space;

To this end, we make use of linear function approximation to

achieve compact representation;

We identify conditions under which this same algorithm can be
applied to partially observable scenarios.

~

/

June 14th, 2007

Slide 4



4 N

Some notation

We represent a MDP as a tuple (X, A,P,r,~v) where
e X and A are the state and action-spaces, respectively;

e P is the transition probability kernel
Pa(x,U) :]P)[Xt-l—l - U ‘ Xt :ZC,At — CL],

e 7r: X xAxAX — R is the reward function:

e v is a discount factor.
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Some notation (cont.)

e The agent should choose the sequence of actions {A;} maximizing

V({A¢},z) =E thRt | Xo=z| ;

)
t=0

e For the optimal action sequence, the corresponding values verify

V() = I;leajl{/)( [’r(aj, a,y) + WV*(y)} Pu.(z,dy);

e The optimal -function is defined as

Q*(z,a) = /X (2, a,y) + AV (9)] Pl dy).
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Related work

Soft-state aggregation methods [4,
9, 11] partition the state-space into
M regions C4,...,Chuy;

Each z € X “belongs” to region C;
with probability p;(x);

The algorithms consider each C; as

a “hyper-state’ and compute the
corresponding values, 0(i, a);

The optimal ()-function is then approximated as

Q(z,a) = Z@(i,a)pi(a:).
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Related work (cont.)

e Tsitsiklis and Van Roy [12] consider a finite-dimensional function
space V obtained as the linear span of a set of M linearly
independent functions &1, ..., &M,

e The authors implement a stochastic approximation algorithm to
determine the fixed point

Vo — PvT5U9*,

where Py is the orthogonal projection on V and T is the
TD-operator;
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Related work (cont.)

e Convergence is established by showing the algorithm to follow the

trajectories of a globally asymptotically stable ODE

’l.)t - PVTCS”Ut — U¢.
V6
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Related work (cont.)

Szepesvari and Smart [10] consider Q)-learning with interpolative
function approximation;

The authors consider a sample-based operator P that projects a
generic function ¢ to a finite-dimensional parameter space by
considering the value of ¢ at a pre-specified set of sample points;

Combined with an interpolation operator F’, this yields a
non-expansive, equipotent operator G = F'P;

The algorithm proceeds by determining the fixed point
qo+ = GHqp~,

where H is the Bellman operator.
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()-learning with LFA
e Our approach is a combination of that in [12] with the one in [10];

e As in [12], we consider a finite-dimensional function space Q
obtained as the linear span of a set of M linearly independent
functions &1, ..., &y and implement a stochastic approximation

algorithm to determine the fixed point
o~ = GHqgp~,

where now G is the sample-based projection on Q defined on [10];
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Q)-learning with LFA (cont.) \

To ensure that, for a generic function ¢, G(q) lies in O, we define
the interpolation operator F' from the functions &;;

Each sample point is chosen so that one of the functions &; attains
its maximum value of 1 at that point and require that

2. l€i(w,a0)] < 1

Then, given a parameter vector § € R™,
FQ(:C) CL) — gT(x7 CI,)H

Convergence is established by showing the algorithm to follow the
trajectories of a globally asymptotically stable ODE

¢ = GHq — q+.
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Two important remarks

1. In order to establish the convergence of the method by means of an
associated ODE requires the underlying Markov process to be

geometrically ergodic;

2. Since H is contractive in the sup-norm and G is non-expansive in
that same norm, the combined operator GH is contractive in the

sup-norm. This, in particular, implies that

e The fixed-point gy~ of the combined operator GH is a globally
asymptotically stable equilibrium point of the associated ODE;

e The obtained approximation verifies

v =@l < 75 16(Q") - @l
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Addressing partial observability

A partially observable MDP (POMDP) is a tuple (X, A, Z,P,0,r,7)
where

e X, A, P, rand ~ are as before;
e Z is the set of possible observations;

e O is the observation probability function
Oalz,2) =P |Ziy1 = 2 | X1 =2, Ay = a].

We assume X and Z to be finite sets.
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Internal state

e Due to partial observability, the agent no longer accesses the state

X, of the process;

e The action choice must now depend on the history of past

observations:

e Defining the vector b; to be
bt(.ﬁl?):P[Xt:ZUlFt]

it can be updated using a simple bayesian update [2]

bir1(y) = Z%X be(x)Pa, (%, y)04, (¥, Zi41)
- Zx,wex bt (x)PAt (:Ca w)OAt (w, Zt—|—1)
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e The vector b; translates the belief of the agent on the current state;

Internal state (cont.)

e In terms of beliefs, the agent should now choose the sequence of
actions {A;} maximizing

V(1Ai},0) thRt | Bo =

t=0

e For the optimal action sequence, the corresponding values now verify

~

N

* L * 1./
V7 (b) = max b(z)Pu(7,y) [ (z,a,y) +7 Y Oaly, 2)V*(¥, )]
where b, . is the updated belief given action a and observation z

Y,
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/ Internal state (cont.) \

However...

e The belief vector b; is Markovian in its dependence of the past;

e We can thus define a fully observable MDP (S™, A, P, #,~) from the
(X, A, Z,P,0,r,~v) where [1]

— S" is the n — 1-dimensional probability simplex, where n =

— P is the transition probability kernel

— Z Z b(x)Pq(x,y)04(y, 2)Iu (b, . );

zeZ x,yecX

— 7 is the reward function

7(b,a,b) = Z b(x y)r(z,a,y).
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QL with LFA in POMDPs

Exact methods for POMDPs are of little use in all but the smallest
problems [6, 8];

Since solving a POMDP (X, A, Z,P,0,r,v) is equivalent to solving
the MDP (S™, A, P, 7,~), we can apply our Q-learning algorithm
with LFA to the MDP (S™, A, P, 7, v);

As seen, we need only guarantee that the underlying process is

geometrically ergodic;

We thus conclude with a very simple result: if the MDP
(X, A,P,r,v) is ergodic and there is one distinguishable state, then

the MDP (S™, A, P, 7,~) is geometrically ergodic.
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Concluding remarks \

Error bounds depend on ||G(Q*) — Q*||,, — bad approximations may
yield bad policies;

The choice of a “good approximation” is a topic of current research
3, 5, 7];

The algorithm uses a fixed learning policy; extension to a
0-dependent policy should be possible, by requiring the dependence
on 6 to be smooth:

The use of a 6-dependent policy suggests that an on-policy version
of the algorithm could probably be derived from our algorithm;

Although we do not consider them, we belief that the algorith can
easily be modified to accomodate eligibility traces, eventually
improving the obtained error bounds; /
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Concluding remarks (cont.)

In the partially observable setup, belief tracking requires knowledge
of the dynamic model (transition and observation probabilities); this

is a common assumption in several situations (e.g., robotic tasks);

The use of learning algorithms and function approximation, even if
relying on belief tracking, may constitute an appealing alternative,
given the complexity of exact methods;

Finally, requiring one state to be distinguishable is often acceptable
(the goal state is often observable); furthermore, this condition is

sufficient (not necessary) and often simple to check in practice.
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