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1. Problem formulation

We collected data: {(Xn, An, Rn, Yy)n≤N}

• Assume a generative model: Yn ∼ p(·|Xn, An)

• Passively observe trajectories under behavior policy: An ∼ πb(·|Xn)

Properties:

• Setting: Off policy batch learning with general function approximation F (state
space is big or continuous)

• What is known: on-policy with linear function approximation works: TD (Tsitsiklis
and Van Roy, 1997), LSTD (Bradtke and Barto, 1996), off-policy batch learning with
“averagers” (Gordon, 1995) is stable.

• Method: fitted value iteration or policy iteration: Very popular! Ex: LSPI (Lagoudakis
and Parr, 2003), Fitted Q iterations (Ernst et al., 2005) for recent algorithms.

• Problem: may diverge! (famous counter-examples (Baird, 1995; Tsitsiklis and Van
Roy, 1996))

• Goal: Design a policy π with near-optimal performance with high probability, ie.
with proba 1 − δ, provide a bound on ||V ∗ − V π|| in terms of the number of samples
N , the capacity of the function space F , δ, ...

Approximate Value Iteration
Vk+1 = PTVk,

where P = approximation operator (eg. projection, regression, supervised learning), T =
Bellman operator (i.e. Tf(x) = maxa[r(x, a) = γ

∫

f(y)P (dy|x, a)]).

• Propagation of error: define πk = greedy policy wrt Vk. Write εk = TVk − PTVk

the approximation error. Then (Bertsekas and Tsitsiklis, 1996):

lim sup
k→∞

||V ∗ − V πk ||∞ ≤
2γ

(1 − γ)2
lim sup

k→∞
||εk||∞ (1)
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• Each step = projection:

Vk+1 = arg min
f∈F

||TVk − f ||

Statistical learning results for regression: Let g a function, µ a distribution, such that
some data (xn, yn)n≤N are collected, with xn ∼ µ, and yn is a noisy estimate of g(xn).
Then the solution to the empirical least squares regression problem:

arg min
f∈F

∑

n

|f(xn) − yn|
2

is close to the projection of g onto F , ie. the solution to

arg min
f∈F

||f − g||2,µ,

when N is large. Statistical learning theory uses capacity measures (VC dimension,
metric entropy) of F to bound the difference between the empirical loss (learning
error) and the functional loss (generalization error). The minimized error is defined
in terms of Lp-norms (or variants) (eg. Neural Networks, linear regession, SVM, kernel
methods, ...) but not with L∞ norm (except for “averagers” (Gordon, 1995) for which
||P||∞ ≤ 1).

• Problem: Dynamic Programming uses L∞ norms (property: ||T ||∞ < 1) whereas
Statistical Learning theory (and Approximation theory) uses Lp norms (property:
||P||p ≤ 1). Thus the combined operator PT is neither a contraction in  L∞ nor in Lp.

Tools:

• Statistical Learning: provide bound on each sampling-based Bellman iterate

• Lp-norm analysis in DP: for the propagation of error

2. Lp analysis of AVI

We have:

Under A1, lim sup
k→∞

||V ∗ − V πk ||∞ ≤
2γ

(1 − γ)2
C(µ)1/p lim sup

k→∞
||εk||p,µ (2)

Under A2, lim sup
k→∞

||V ∗ − V πk ||p,ρ ≤
2γ

(1 − γ)2
C(ρ, µ)1/p lim sup

k→∞
||εk||p,µ (3)

where assumption A1 [concentration of the transition kernel] says that there exists
C(µ) < ∞ such that, for all x, a,

P (dy|x, a) ≤ C(µ)µ(dy)

(Example: if µ is the uniform measure then this assumption says that the transition prob-
ability kernel P (·|x, a) admits a uniformly bounded density).
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And assumption A2 [concentration of the discounted future-state distributions]
assumes that there exists C(ρ, µ) < ∞, for all x, a,

(1 − γ)2
∑

t≥1

tγt−1
P
(

Xt ∈ dy|X0 ∼ ρ,A0, A1, · · · ) ≤ C(ρ, µ)µ(dy).

Property: Dynamics which fail to satisfy these assumptions would probably preclude
any sample-based estimation of the performance.

Where do these Lp bounds come from? Assume that for two positive vectors u and v
are such that u ≤ Pv, with P a stochastic matrix. Of course we deduce that ||u||∞ ≤ ||v||∞,
but moreover if ρ and µ are probability distributions such that componentwise ρP ≤ Cµ,
with C ≥ 1 a constant, then we deduce that

||u||p,ρ ≤ C1/p||v||p,µ.

Indeed we have

||u||pp,ρ =

∫

x∈X
ρ(dx)|u(x)|p ≤

∫

x∈X
ρ(dx)

[

∫

y∈X
P (dy|x)v(y)

]p

≤

∫

x∈X
ρ(dx)

∫

y∈X
P (dy|x)v(y)p

≤ C

∫

y∈X
µ(dy)v(y)p = C||v||pp,µ,

using Jensen’s inequality.

Well, in AVI, this is the case. We may prove that we have the following componentwise
bound:

lim sup
k→∞

V ∗ − V πk ≤ lim sup
k→∞

(I − γP πk)−1 (4)

(

k−1
∑

l=0

γk−l
[

(P π∗

)k−l + P πkP πk−1 . . . P πl+2P πl+1
]

|εl|
)

,

which implies both the L∞ bound (1) and the Lp bounds (2) and (3).

Extension to other approximate DP methods: The L∞ bounds for Approximate
policy iteration:

lim sup
k→∞

||V ∗ − V πk ||∞ ≤
2γ

(1 − γ)2
lim sup

k→∞
||Vk − V πk ||∞

and the Bellman residual bound:

||V ∗ − V π||∞ ≤
2

1 − γ
||TV − V ||∞

have their counterpart Lp bounds too!
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3. Finite sample bound on each AVI iteration

Two sources of error:

• The Bellman operator T (which makes use of an expectation over next states) needs
to be estimated from samples (sampling-based Bellman operator: T̂ )

• The projection (approximation) operators uses samples (sampling-based projection:
P̂).

A single update: Draw N points (Xi ∼ µ)i≤N , and then from each of those points,

for all possible actions, draw M samples of observed rewards (Ri,a
j )j≤M and next states

(Y i,a
j ∼ P (·|Xi, a))j≤M using generative model.

Then define the sampling based Bellman backed up values:

V̂ (Xi) = max
a

1

M

[

∑

j

[Ri,a
j + γV (Y i,a

j )]
]

and the sampling-based projection onto F :

P̂T̂ V = arg min
f∈F

∑

i

|f(Xi) − T̂ V (Xi)|
p. (5)

Sample bound: We have (neglecting log N terms) with probability 1 − δ,

||P̂ T̂V − TV ||p,µ ≤ d(TV,F) + O
{(VF log δ−1

N

)1/2p
+

( log δ−1

M

)1/2}

where d(TV,F) = inff∈F ||TV −f ||p,µ and VF is a capacity measure of F (pseudo-dimension).

4. AVI: Putting things together

Sampling-based fitted VI: repeat K times the previous update (5): Vk+1 = P̂T̂ Vk (where
either using the same set of samples throughout all iterations or regenerate a fresh set at
each iteration). Then, with probability 1 − δ, we have:

||V ∗−V πK ||∞ ≤
2γ

(1 − γ)2
C(ρ, µ)1/p

[

d(TF ,F)+O
{(VF log δ−1

N

)1/2p
+

( log δ−1

M

)1/2}]

+O(γK)

where d(TF ,F) = supg∈F inff∈F ||Tg − f ||p,µ is the inherent Bellman residual of F .

Analysis of this result:

• This explains the counter examples of (Baird, 1995; Tsitsiklis and Van Roy, 1996) for
which d(TF ,F) = ∞

• Question: if the space F grows, does d(TF ,F) decrease?

• Answer: Yes! if the MDP is smooth (ie. P (dy|·, a) and r(·, a) are Lipschitz)

• Thus fitted policy iteration is a sound method!

• Bias-variance tradeoff: when F grows, the approximation error d(TF ,F) decreases
(bias term) but the estimation error O((VF/N)1/2p) (variance term) increases, but
may be made smaller by using more samples (to avoid overfitting).
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Numerical experiment: This is an optimal replacement problem (see e.g. (Rust, 1996)).
We consider approximation of the value function using polynomials of degree l.
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Figure 1: Approximation errors ||V ∗ − VK ||∞ of the function VK returned by sampling-
based FVI after K = 20 iterations, for different values of the polynomials degree
l, for N = 100, M = 10 (plain curve), N = 100, M = 100 (dot curve), and
N = 1000, M = 10 (dash curve) samples. The plotted values are the average
over 100 independent runs.

5. What about if we must follow a fixed policy?

We observe a plant under control (behavior policy πb) and from those collected data
(Xt, At ∼ πb(·|Xn), Rt,Xt+1 ∼ P (·|Xt, At), . . . ), can we design a near-optimal policy?

What are the additional assumptions?

• Exploration: The behavior policy πb > 0 and the MDP following πb is stationary:
Xt ∼ µ,

• Since the samples are correlated, we need a forgetting property of the process. We
assume the Markov chain (Xt) is β-mixing with exponential rate: supt≥1

∣

∣P(Xt+m ∈
B|X1, · · · ,Xt)−P(Xt+m ∈ B)

]

| ≤ O(e−bmκ

) (i.e. future depends weakly on the past)

Let us use fitted policy iteration (fitted Q iteration should work also...)

5.1 Policy evaluation by Bellman residual minimization

Here we use Q-functions instead of value functions.
Repeat K policy iteration steps, where at each iteration k, we find a approximation

Qk ∈ F of V πk that minimizes the norm of the Bellman residual:

arg min
Q∈F

||Q − T πkQ||2,µ. (6)
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However we need to be careful when writting a sampling-based version of that problem.
Indeed, the solution to

arg min
Q∈F

∑

t

|Q(Xt, At) − [Rt + γQ(Xt+1, πk(Xt+1))]|2 (7)

is not consistent with the solution to (6) (see eg. (Sutton and Barto, 1987), (Munos, 2003),
(Lagoudakis and Parr, 2003)): the sampling-based estimate is biased.

Indeed, defining the function h(x, a, y) = r(x, a) + γQ(y, πk(y)), the problem (6) mini-
mizes E(X,A)∼µ[(Q(X,A)− (EY ∼P (·|X,A)[h(X,A, Y )])2] whereas (7) is a sampled-based min-
imization of E(X,A)∼µ,Y ∼P (·|X,A)[(Q(X,A) − h(X,A, Y ))2]. The difference between these
quantities is the variance of h(x, a, Y ), ie:

E[(Q(x, a) − h(x, a, Y ))2] − [Q(x, a) − (E[h(x, a, Y )])2] = Var [h(x, a, Y )] .

Thus we defined the modified Bellman residual empirical minimization problem:

arg min
Q∈F

{

∑

t

|Q(Xt, At) − [Rt + γQ(Xt+1, πk(Xt+1))]|2

− arg min
g∈F

∑

t

|g(Xt, At) − [Rt + γQ(Xt+1, πk(Xt+1))]|2
}

which is a unbiased estimate and yields a solution consistent to the solution of (6)

Linear approximation space In case F is linear, then the modified Bellman residual
problem is nothing else than LSPI (Lagoudakis and Parr, 2003) which provides a finite-time
performance bound for this algorithm.

Result: High probability bound on the performance loss in terms of the number of samples
N and of iterations K: Under A1, with probability 1− δ, we have (neglecting log N terms):

||V ∗−V πK ||∞ ≤
2γ

(1 − γ)3

√

C(µ)
[

d(F , TF)+O
(

( [VF + log(1/δ)]1+1/κ

N

)1/4
)]

+O(γK), (8)

where: d(F , TF) = supg∈F supπ inff∈F ||T πg− f ||µ is the inherent Bellman error of F , and
VF is a capacity measure of F which depends on the pseudo-dimension and the VC-crossing
dimension of F (i.e. VC-dimension of {{x ∈ X, f(x) ≥ g(x)}, f, g ∈ F} ).

5.2 Policy evaluation by FVI:

Repeat K times:

• Fitted policy evaluation step: find an approximation of Qπk by repeating M steps
of fitted value iteration:

– Define Ik
def
= {t ∈ [1, N ], At = πk(Xt)}.

– Define (Qm
k )0≤m≤M by: for 0 ≤ m < M ,










vm
t

def
= Rt + γQm

k (Xt+1, πk(Xt+1)), for all t ∈ Ik

Qm+1
k

def
= arg min

f∈F

∑

t∈Ik

[

f(Xt, At) − vm
t

]2
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• Policy improvement step: define the new policy πk+1 by:

πk+1(x)
def
= arg max

a
QM

k (x, a)

Return policy πK .

Results: Similar to (8) with O(γmin(K,M)) instead of O(γK).
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