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General Setup

. Goal: Find a policy that.
p— Policy maximizes the reward
L= m(x) or u ~ w(u|x)
Reward Next state Action
re R ' € R" u € R™
- System |
/
- p(@ |z, u) -
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‘ Goal of RL

What does maxim%ing your rewards mean?
1

J(r) == D r(xeupt) = E{r(x,u,t)}

t=1

Find a policy that maximizes the rewards!

A policy tells you which actions to use for each state!
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l Policy Search vs Value Function Methods

Value Function View!

Critic: Policy Evaluation Actor: Compute Optimal Policy

T
Q(Xt,llt,t) =F { ZT(XTauT?T)
T=t

xt,ut} —/ w; = 7(x¢,t) = argmax Q(xq, u, t)

—
Policy Search View!
Critic: Policy Sensitivity Actor: Policy Improvement
T
J(m)=F Zr(xt, uy, t) —/ 7' = argmax_ {J(7") — J(m)}
t=0 —
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Greedy vs Gradients

Greedy Updates:
potentially

0, = argmaXéEwé {Q™ (x,u)}
unstable learning

Ve
\)Small / Large \)La,ge — £ \) b wm & process with large

change change change change policy jumps
Policy Gradient Updates:
dJ(0
0. =0, + « ( )
do 6=0

stable learning
process with

Vﬂ- - @ — Vﬂ- ~— T “~— .
\)Small / \)Sma”/ \)Smalll\) SmaII/ smooth pollcy

change change change change improvement
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Why Policy Gradient Methods?

Why Policy Gradients?

e Smooth changes in the parameters result into stability.
¢ Prior information can be incorporated with ease.

¢ \Works with incomplete information.

¢ Exploration-Exploitation Dilemma implicitly treated.

¢ |s unbiased!

¢ Only requires much fewer samples.

3. FD vs LR gradients




Finite Difference Gradients

Blackbox-Approach

Perturb the Parameters of your Policy

3. FD vs LR gradients



Finite Difference Gradients

Why use Finite Difference Gradients?

¢ Only needs a black box!

¢ \Works on any parameterization and deterministic policy.
¢ Fast to estimate for deterministic systems.

e State of the art in the simulation community

Why not?
eParameter perturbation can destroy your robot.

esEXxploration is hard to include.

* For stochastic systems it is very slow.

3. FD vs LR gradients




Likelihood Ratio Gradients

Reward
re R

Whitebox-Approach

y, Policy

3 M or u ~ 7(u|x)
r

-

Next state
' ¢ R"

- System
p(x'|z, u)

Perturb the actions using a stochastic policy

Action

R™ . .
“e Actions with

\ﬁ .
Noise
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Likelihood Ratio Gradients

U
dw()

r(u) du, (2)

|
—

U

:/ 7r1u dm (u r(u) du, (3)
:/ dlog’zr (u) du, (4)
:E{dlogdg( Yy >} %Zdlogdg(“"')rm) (5)
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Likelihood Ratio Gradients

Why use Likelihood Ratio Gradients?
¢ Fastest Gradient Method!

¢ \We know the policy derivative - thus they are more efficient than
for the simulation community.

e Only perturb the motor command -> policies will remain stable!

Why not?
e Stochastic policy.

® |njection of noise into the system.

® Theory much more complex!

3. FD vs LR gradients
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Goal of RL Revisited

Goal: Optimize the expected return

J(0) :/Xd”(w)/ww(u\m)r(w,u)dudw,

> A X

State distribution Policy Reward
(we can choose it)

=(1-y)F {thm}
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Policy Gradient Methods

According to the Policy Gradient Theorem, the gradient can \l
computed as

VeJ(0) = /Xd”(w)/UVQW(u]w)(Q”(:B,u) — b (x))dudex.

Gradient of the Derivﬁve State-action Arbitrary baseline
expected return only of the  value function function
policy

Problems: High variance, very slow convergence, dependence on
baseline!

Originally discovered: Aleksandrov, 1968; Glynn,1986.
Examples: episodic REINFORCE, SRV, GPOMDRF, ...
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Compatible Function Approximation

The state-action value function can be replaced by

dlogm (u|z)

Q™ (x,u) = f(z,u) = 40 w
Parameters
| % _ ? _ ﬁ % of the
State-action Compatible*function Log-policy function
value function approximation derivative approximator

without biasing the gradient.
Thus, the policy gradient becomes

VeJ(0) = /Xd”(:n)/UVgW(u@ b™ (x))dudz.

(Sutton et al., 2000; Konda& Tsitsiklis, 2000)

4. Likelihood Ratio Gradients




All-Action Gradient

By integrating over all possible actions in a state, the baseline can
be integrated out, and the gradient becomes:

Vo J(0) :/Xd”(a:)/UVQW(uh:)(fg(w,u)—b(w))dudw,

:/dw(m m(u|z)Vglogm(u|z)Velogr(u|z)! wddz,
-
= F(0)w.
| ! v (Peters et al., 2003)
All Action Matrix Parameters
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Natural Gradients

Natural Gradients:

A more efficient gradient in learning problems is the natural gradient
(Amari, 1998):

Natural gradient

N
VoJ(0) =G 1(0)VeJ(0)

Inverse of the Fisher Informationﬂatrix ‘Vanilla® gradient

where

d7r / u|33 u|a: @r u|x)) dudex.
VeoJ(0

alTr /er u|lz)(Q" (x,u) — b" (x))dudzx.
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All Action = Fisher Information!

So how does the All-Action Matrix
F0) = /dﬁ(w)/w(u\w)v.g log m(u|x) Vg log m(u|x)dudx.
X U
relate to the Fisher Information Matrix

GO)= [ d"(x) | m7(u|r)Velog (d" (x)r(u|x)) Velog (d" (x)r(u|x)) dudx.
X U

While Kakade (2002) suggested that F is an ‘average of
point Fisher information matrices’, we could prove that

o

(Peters et al., 2003; 2005; Bagnel et al., 2003)
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Natural Gradient Updates

As G = F, the gradient simplifies to

and the policy parameter update becomes

Important: The estimation of the gradient has simplified upon
estimating the compatible function approximation / critic!!!

(Kakade, 2002; Peters et al., 2003, 2005; Bagnell&Schneider, 2003)
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Natural Policy Gradients

Linear
Quadratic
Regulation

Two-State
Problem

r=0,u=0
N
r =]
u
r=0u=1
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Compatible Function Approximation

To obtain the natural gradient
VoJ(0) =w
we need to estimate the compatible function approximation
T
dlogm(u|x)

foo (2, ) = w

dé

This function approximation is mean zero! Therefore it
can ONLY represent the Advantage Function

4. Likelihood Ratio Gradients




‘ Compatible Function Approximation

The advantage function
fr(e,u)=Q " (x,u) —V™(x) = A" (x,u).

is very different from the value functions!

5Value Function Q™ (x,u) Agvantage Function A™(x,u)
S S
= =
8 2
S S
<X <X
-9

1
| ot

State -5 State x 5

...and we cannot directly do Temporal Difference Learning
on this representation!
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Natural Actor-Critic

We cannot do TD learning with
fr(e,u) =Q"(x,u) — V™ (x) = A" (x,u).

But when we add further basis function approximators

into the Bellma jon \

Vﬁ(th) + Vg log 7T(7Jnt|ilf3t)T’w = T(iL’t, Ut) + ’va(mt—l—l) + €

we get a linear regression problem which can be solved with
the LSTD(A) algorithm (Boyan, 1996) in one step!

4. Likelihood Ratio Gradients




l Natural Actor-Critic

Critic: LSTD-Q(A) Evaluation
e [T = (i), 07
n

Actor: Natural
®, = [p(x:)", Vo log m(us|x)T]T Policy Gradient

'— / Improvement

basis
functio

Zi+1 = AZy + Py

Boyan/S At—|—1 = At + Zt—}—l(@t — ’Yrt) | L—I 0t—|—1 — Ot _|_ Wy
LSTDV'W byy1 = by + zeg17e41 v
[wf+17 Uf+1]T = A;jullbtﬂ

4. Likelihood Ratio Gradients



Algorithms Derivable from this Framework

Gibbs Policy

il ) = @ 5, @
\NV Sutton et al.’s (1983)

o o o N A t C nt.
Additional Basis Functions Framew? ctor Critic

é(z) =10,...,0,1,0, ..., 0]7 —

Linear Gauss-Policy NAC

m(ulz) = N(t = Ogain” T, 0explore) | Frammgwork
with Le aﬂrg Bradtke&Bartos (1993)

Additional Basis Functions Rate / Q-Learning for LQR
¢(x) = ' P+ p

’L’ 17(6:)]
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Episodic Natural Actor Critic

...but in many cases we don’t have any good
additional basis functions!

V™ (z) = ¢(z)" v

In this case, we can sum up the advantages along a trajectory and
obtain one data point for a linear regression problem

T T T
V(o) + (z v, logw<ut|xt>) W= 3 ytre ) ATV e )
— t=0 . =0 . Y

J \
TV TV

Pi R;

...and an additional basis function of 1 suffices!
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Episodic Natural Actor-Critic

Critic: Episodic Evaluation

T °
d — Y1, Y2, ..., PN AC.tor. Natlfral
Sufficient | 1 1 Policy Gradient
Isti 7 ] L— Improvement
Statistics / p

T
R =[Ri,R;,....Ry]
T Ht_|_1 = Ot + Wy

L

|

- —1
Lmea.r { [w] _ ((I)T(I)) TR
Regression J
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Improving Motor Primitives

Trajectory Plan
Dynamics

Canonical
Dynamics

Local Linear
Model Approx.

lispeert et al. (2002) suggested a nonlinear dynamics
approach for motor primitives in imitation learning:

{

Z:az(ﬂz(g_y)_z)
y=o,(f(x,v)+2)

where

v=a,(B,(g-x)-v)

The parameters b can

xX=o.v i
) also be improved by
Z @ Reinforcement
flx,v)= Flzk: Learning
w.

=1
o, =ex 34 (3¢’ | ang 722

8~ Xo
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Improving Motor Primitives

Minimum Motor

Command. Two Goals Policies

4. Evaluations
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Conclusions P S
o If you can explore your complete state-action space sufficiently ... usedue
function methods.

o If you have access to policy and its derivatives... use likelthood ratio policy
gradient method.

o If you have good additional basis function... use Natural Actor-Critic.
o If not ... use Episodic Natural Actor-Critic.

o If you want to explore a problem fastly ... use ‘vanilla’ likelibood ratio
policy gradient methods.

o If you can only access your parameters... use finite difference policy
gradient method.

o If you can only access your parameters... use finite difference policy
gradient methodb.

6. Conclusion




Projects...

o Learning Motor Primitives with Reward-Weighted
Regression

o This will be a nearly new method... very enthusiastic people needed!

o Applying Policy Gradients (methods of your choice!) to
Oscillator Optimization!

o Here we can create several projects if you like :)
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