
Instituto de Sistemas e Robótica
Pólo de Lisboa

Q-learning with linear
function approximation1

Francisco S. Melo
M. Isabel Ribeiro

March 2007
RT-602-07

ISR Torre Norte
Av. Rovisco Pais, 1

1049-001 Lisboa
PORTUGAL

1This work was partially supported by Programa Operacional Sociedade do Conhecimento (POS_C) that includes
FEDER funds. The first author acknowledges the PhD grant SFRH/BD/3074/2000.

Q-learning with linear function
approximation

Francisco S. Melo M. Isabel Ribeiro
Institute for Systems and Robotics

Instituto Superior Técnico
Av. Rovisco Pais, 1
1049-001 Lisboa,

PORTUGAL
{fmelo,mir}@isr.ist.utl.pt

Abstract

In this paper, we analyze the convergence of Q-learning with linear function approximation.
We identify a set of conditions that implies the convergence of this method with probability
1, when a fixed learning policy is used. We discuss the differences and similarities between
our results and those obtained in several related works. We also discuss the applicability of
this method when a changing policy is used. Finally, we describe the applicability of this
approximate method in partially observable scenarios.

1 Introduction

Reinforcement learning addresses the problem of an agent faced with a sequential decision prob-
lem and using evaluative feedback as a performance measure. Reinforcement learning methods
compute a mapping from the set of states of the agent/environment to the set of possible actions.
Such mapping is called a policy and it is customary to define a utility-function, or value-function,
estimating the practical utility of each particular policy. Value-based methods such as TD-learning
[34], Q-learning [44], SARSA [32] and many others [5, 12, 21, 36] have been exhaustively covered in
the literature and, under mild assumptions, have been proven to converge to the desired solution
[6].

However, many such algorithms require explicit representation of the state-space, and it is of-
ten the case that the latter is unsuited for explicit representation. Instead, the decision-maker
should be able to generalize its action-pattern from the collected experience. There are numerous
works in the topic of generalization. In many such works, a suitable approximation architecture is
proposed and then applied with one’s favorite learning method [11, 35]. Encouraging results were
reported, perhaps the most spectacular of which by Tesauro’s Gammon player [38, 39]. Several
other works provided formal analysis of convergence when RL algorithms are combined with func-
tion approximation. We refer the early works by Singh et al. [33], Gordon [17] and Tsitsiklis and
Van Roy [40]. A few other works further extended the applicability/performance of these methods
[2, 12, 27, 30, 37, 41].

In this paper, we analyze the convergence of Q-learning with linear function approximation.
Our approach is closely related to interpolation-based Q-learning [37] and the learning algorithm
by Borkar [8]. We identify conditions that ensure convergence with probability 1 (w.p.1). We also
interpret the obtained approximation and discuss the error bounds in the obtained approximation.
We conclude the paper by addressing the applicability of our methods to partially observable
scenarios.

2

Technical Report RT-602-07, March 2007 3

2 The Framework of Markov Decision Process
Let X be a compact subspace of Rp and {Xt} a X -valued controlled Markov chain.1 The transition
probabilities for the chain are given by a the kernel

P [Xt+1 ∈ U | Xt = x,At = a] = Pa(x, U),

where U is any measurable subset of X . The A-valued process {At} represents the control process:
At is the control action at time instant t and A is the finite set of possible actions. The agent aims
to choose the control process {At} so as to maximize the expected total discounted reward, i.e.,

V ({At} , x) = E

[∞∑
t=0

γtR(Xt, At) | X0 = x

]
,

where 0 < γ < 1 is a discount-factor and R(x, a) represents a random “reward” received for taking
action a ∈ A in state x ∈ X .

We assume throughout this paper that there is a deterministic function r : X × A× X −→ R

assigning a reward r(x, a, y) every time a transition from x to y occurs after taking action a and
that

E [R(x, a)] =
∫
X
r(x, a, y)Pa(x, dy).

This simplifies the notation without introducing a great loss in generality. We further assume that
there is a constant R ∈ R such that |r(x, a, y)| < R for all x, y ∈ X and all a ∈ A.2 We refer to
the 5-tuple (X ,A,P, r, γ) as a Markov decision process (MDP).

Given the MDP (X ,A,P, r, γ), the optimal value function V ∗ is defined for each state x ∈ X
as

V ∗(x) = max
{At}

V ({At} , x) = max
{At}

E

[∞∑
t=0

γtR(Xt, At) | X0 = x

]
and verifies

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy),

which is a form of the Bellman optimality equation. From the optimal value function, the optimal
Q-values, Q∗(x, a), are defined for each state-action pair (x, a) ∈ X ×A as

Q∗(x, a) =
∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy). (2.1)

From Q∗ it is also possible to define a mapping π∗ : X −→ A as

π∗(x) = arg max
a∈A

Q∗(x, a), for all x ∈ X ,

and the control process {At} defined by At = π∗(Xt) is optimal in the sense that

V ({At} , x) = V ∗(x),

for all x ∈ X . The mapping π∗ is an optimal policy for the MDP (X ,A,P, r, γ).
More generally, a policy is a mapping πt : X × A −→ [0, 1] that generates a control process

{At} verifying
P [At = a | Xt = x] = πt(x, a),

for all t. Clearly, since πt(x, ·) is a probability distribution over A, it must satisfy
∑

a∈A πt(x, a) =
1, for all x ∈ X . A stationary policy is a policy δ that does not depend on t. A deterministic

1We refer to a subspace in the topological sense.
2This assumption is tantamount to the standard requirement that the rewards R(x, a) have uniformly bounded

variance.

4 Institute for Systems and Robotics

policy is a policy assigning probability 1 to a single action in each state. We denote such policy as
a function πt : X −→ A, that generates a control process {At} verifying At = πt(Xt) for all t. We
write V πt(x) instead of V ({At} , x) if the control process {At} is generated by a policy πt.

The optimal control process can be obtained from the optimal (stationary, deterministic) policy
π∗, which can in turn be obtained from Q∗. Therefore, the optimal control problem is solved once
the function Q∗ is known for all pairs (x, a) ∈ X ×A.

Now given any two functions v : X −→ R and q : X ×A −→ R, we can define the operators

(Tv)(x) = max
a∈A

∫
X

[
r(x, a, y) + γv(y)

]
Pa(x, dy)

and
(Hq)(x, a) =

∫
X

[
r(x, a, y) + γmax

u∈A
q(y, u)

]
Pa(x, dy). (2.2)

The functions V ∗ and Q∗ introduced above are fixed-points of the operators T and H, respectively.
Each of these operators is a contraction in a corresponding norm and, theoretically, a fixed-point
iteration could be used to determine V ∗ and Q∗.

On the other hand, if P or r (or both) are not known, the Q-learning algorithm can be used,
defined by the update rule

Qk+1(x, a) = (1− αk)Qk(x, a) + αk

[
R(x, a) + γmax

u∈A
Qk(X(x, a), u)

]
, (2.3)

where Qk(x, a) is the kth estimate of Q∗(x, a), X(x, a) is a X -valued random variable obtained
according to the probabilities defined by P and {αk} is a step-size sequence. Notice that R(x, a)
and X(x, a) can be obtained through some simulation device, not requiring the knowledge of either
P or r. The estimates Qk converge with probability 1 (w.p.1) to Q∗ as long as∑

t

αt = ∞
∑

t

α2
t <∞.

The Q-learning algorithm was first proposed by Watkins in 1989 [44] and its convergence w.p.1
later established by Watkins and Dayan [43] and several other authors [6, 20].

3 Q-learning with linear function approximation
In this section, we establish the convergence properties of Q-learning when using linear function
approximation. We identify the conditions ensuring convergence w.p.1 and derive error bounds for
the obtained approximation. As will soon become apparent, the results derived herein are deeply
related with other approaches described in the literature [8, 17, 33, 37, 40].

3.1 Combining Q-learning with linear function approximation
We previously suggested that a fixed-point iteration could theoretically be used to determine Q∗.
However, this implicitly requires that the successive estimates for Q∗ can be represented compactly
and stored in a computer with finite memory and that the transition kernel P and the reward
function r are known.

If X is finite, Q∗ (and hence any corresponding estimates) can be represented as an |X | × |A|
matrix. Therefore, the first of the two above conditions is trivially fulfilled. To solve for Q∗ we
can use the fixed-point iteration proposed in Section 2 or the Q-learning algorithm, if P and r are
not known.

However, if X is an infinite set, it is no longer possible to straightforwardly apply any of the
aforementioned methods. For example, the updates in (2.3) explicitly consider the Q-values for
each individual state-action pair and there will be infinitely many such pairs if X is not finite.
Therefore, some compact representation of either X or Q∗ is necessary to tackle the infinite nature
of X . In our approach, we focus on compact representations for Q∗.

Technical Report RT-602-07, March 2007 5

P

Q∗ = HQ∗

Q(θ∗) = PHQ(θ∗) Q

PQ∗

Figure 1: Optimal function Q∗ = HQ∗ and the fixed-point of Q(θ∗) of the combined operator PH.
Notice that, in general Q(θ∗) 6= PQ∗.

In our pursuit to approximate Q∗, we start by considering a family of functions Q = {Qθ} pa-
rameterized by a finite-dimensional parameter vector θ ∈ RM . If we replace the iterative procedure
to find Q∗ by a suitable “equivalent” procedure to find a parameter θ∗ so as to best approximate
Q∗ by a function in Q, we move from a search in an infinite dimensional function space to a search
in a finite dimensional space (RM). This has an immediate implication: unless if Q∗ ∈ Q, we will
not be able to determine Q∗ exactly. Instead, we will determine the fixed point of a combined
operator PH, where P is some mapping that “projects” a function q defined in X × A to a point
in Q (see Fig. 1).

In this paper we admit the family Q to be linear in that if q1, q2 ∈ Q, then so does αq1 + q2
for any α ∈ R. Q is therefore the linear span of some set of linearly independent functions
ξi : X ×A −→ R, and each q ∈ Q can be written as

q(x, a) =
M∑
i=1

ξi(x, a)θ(i),

where θ(i) is the ith component of the vector θ ∈ RM . If Ξ = {ξ1, . . . , ξM} is a set of linearly
independent functions, we interchangeably use Qθ and Q(θ) to denote the function

Qθ(x, a) =
M∑
i=1

ξi(x, a)θ(i) = ξ>(x, a)θ, (3.1)

where ξ(x, a) is a vector in RM with ith component given by ξi(x, a).
We throughout let Ξ = {ξi, i = 1, . . . ,M} be a set ofM bounded, linearly independent functions

verifying ∑
i

|ξi(x, a)| ≤ 1 (3.2)

for all (x, a) ∈ X ×A and eventually introduce further restrictions on the set Ξ as needed.

3.2 Linear approximation using sample-based projection
We now consider a sample-based approximation model that, while imposing somewhat strict con-
ditions on the set of functions Ξ, will allow us to derive useful error bounds for the obtained
approximation Qθ∗ . For that we assume that the functions in Ξ verify

‖ξi‖∞ = 1. (3.3)

We remark that if (3.2) and (3.3) simultaneously hold, linear independence of the functions in Ξ
arises as an immediate consequence. To see this, notice that for each function ξi ∈ Ξ there is a
point (x, a) such that |ξi(x, a)| = 1, as ‖ξi‖∞ = 1. Then, since

∑
i |ξi(x, a)| ≤ 1, ξj(x, a) = 0 for

all j 6= i. This, in turn, implies the functions in Ξ are linearly independent. As in the previous
subsection, we take the family Q as the linear span of Ξ.

6 Institute for Systems and Robotics

For each function ξi ∈ Ξ take a point (xi, ai) in X × A such that |ξi(xi, ai)| = 1, and denote
by I the set obtained by gathering M of such points, one for each ξi ∈ Ξ. If B is the set of all
(essentially) bounded functions defined on X × A and taking values on R, we define a mapping
℘ : B −→ RM as

(℘f)(i) = f(xi, ai), (3.4)

where f is an arbitrary function in B, (℘f)(i) is the ith component of the vector ℘f and (xi, ai) is
the point in I corresponding to ξi. Notice that ℘f is properly defined for every f ∈ B and verifies

‖℘f‖∞ ≤ ‖f‖∞

and
℘[αf1 + f2] = α℘f1 + ℘f2.

Our variant of Q-learning iteratively determines the point θ∗ ∈ RM verifying the fixed-point
recursion

θ∗ = ℘HQ(θ∗), (3.5)

where H is the operator defined in (2.2). Since H is a contraction in the maximum norm and∑
i |ξi(x, a)| ≤ 1, the fixed point in (3.5) is properly and uniquely defined.
To derive the expression of the algorithm, we remark that (3.5) can be explicitly written as

θ∗(i) =
∫
X
δ(xi,ai)(x, a)

∫
X

[
r(x, a, y) + γmax

u
ξ>(y, u)θ∗

]
Pa(x, dy)dµ(x, a),

where µ is some probability measure on X × A and δ(xi,ai) is the Dirac delta centered around
(xi, ai).

We are now in position to describe our algorithm. Let gε be a smooth Dirac approximation,3
such that ∫

gε(x, a; y, u)dµ(y, u) = 1

lim
ε→0

∫
gε(x, a; y, u)f(y, u)dµ(y, u) = f(x, a).

Let π be a stochastic stationary policy and suppose that {xt}, {at} and {rt} are sampled
trajectories from the MDP (X ,A,P, r, γ) using policy π. Then, given any initial estimate θ0, we
generate a sequence {θt} according to the update rule

θt+1(i) = θt(i) + αtgεt(xi, ai; xt, at)
[
rt + γ max

u∈A
ξ>(xt+1, u)θt − ξ>(xt, at)θt

]
,

where {εt} is a sequence verifying
εt+1 = (1− βt)εt.

More generally, we can have
εt+1 = εt + βth(εt),

where h is chosen so that the ODE ẋt = h(xt) has a globally asymptotically stable equilibrium in
the origin.

Under some regularity assumptions on the Markov chain (X ,Pπ) obtained using the policy π
and on the step-sizes αt and βt, the trajectories of the algorithm closely follow those of an associated
ODE with a globally asymptotically stable equilibrium point θ∗. Therefore, the sequence {θt} will
converge w.p.1 to the equilibrium point θ∗ of the ODE.

We now state our main convergence result. Given a MDP (X ,A,P, r, γ), let π be a stationary
stochastic policy and (X ,Pπ) the corresponding Markov chain with invariant probability measure

3There are several common smooth Dirac approximations, e.g.,

gε(x; y) =
1

ε
√

π
e−‖x−y‖2/ε2

.

Technical Report RT-602-07, March 2007 7

µX . Denote by Eπ [·] the expectation w.r.t. the probability measure µπ defined for every set
Z × U ⊂ X ×A as

µπ(Z × U) =
∫

Z

∑
a∈U

π(x, a)µX(dx).

Also, define α̂t(i) as
α̂t(i) = αtgεt

(xi, ai;xt, at).

Theorem 3.1. Let (X ,A,P, r, γ) be a Markov decision process and assume the Markov chain
(X ,Pπ) to be geometrically ergodic with invariant probability measure µX . Suppose that π(x, a) > 0
for all a ∈ A and µX-almost all x ∈ X .

Let Ξ = {ξi, i = 1, . . . ,M} be a set of M functions defined on X × A and taking values in R.
In particular, admit the functions in Ξ to verify ‖ξi‖∞ = 1 and

∑
i |ξi(x, a)| ≤ 1.

Then, the following hold:

1. Convergence: For any initial condition θ0 ∈ RM , the algorithm

θt+1(i) = θt(i) + αtgεt(xi, ai; xt, at)
[
rt + γ max

u∈A
ξ>(xt+1, u)θt − ξ>(xt, at)θt

]
, (3.6a)

εt+1 = (1− βt)εt. (3.6b)

converges w.p.1 as long as the step-size sequences {αt} , {βt} are such that∑
t

αt = ∞;
∑

t

α2
t <∞; (3.7a)∑

t

βt = ∞;
∑

t

β2
t <∞, (3.7b)

βt = o(αt) and αt is built so that mini

∑
t α̂t(i) = ∞.

2. Limit of convergence: Under these conditions, the limit function Q(θ∗) of (3.6) verifies

Qθ∗(x, a) = (PHQθ∗)(x, a), (3.8)

where P : B → Q denotes the operator given by

(PQ)(x, a) = ξ>(x, a)℘Q.

3. Error bounds: Under these conditions, the limit function Qθ∗ verifies the bound

‖Q(θ∗)−Q∗‖∞ ≤ 1
1− γ

‖PQ∗ −Q∗‖∞ . (3.9)

Proof See Appendix A. 2

3.3 Discussion
Before concluding this section, we briefly discuss the conditions of Theorem 3.1 and compare our
results with several related works in the literature.

3.3.1 Convergence conditions:

In Theorem 3.1 we identified several conditions that guarantee convergence w.p.1 of the algo-
rithm defined by the update rule in (3.6). These conditions can be classified in two main groups:
conditions on the problem and conditions on the algorithm.

The fundamental condition on the model is that of geometric ergodicity of the Markov chain
(X ,Pπ). Geometric ergodicity ensures that the chain converges exponentially fast to stationarity
and, as such, its steady-state behavior is properly captured by the sample trajectories used in the

8 Institute for Systems and Robotics

updates. The analysis of convergence of our algorithm can be conducted in terms of a stationary
“version” of it.

Moreover, geometric ergodicity also ensures that all “interesting” regions of the state-space are
visited infinitely often [26].4 The condition that π(x, a) > 0 for all a ∈ A and µX -almost every
x ∈ X ensures that, in these “interesting” regions of the state-space, every action is tried infinitely
often. Therefore, geometric ergodicity and the requirement that π(x, a) > 0 for all a ∈ A and
µX -almost all x ∈ X can be interpreted as a continuous counterpart to the usual condition that
all state-action pairs are visited infinitely often.

The conditions on the algorithm are those concerning the basis functions used and those con-
cerning the step-size sequences ({αt} and {βt}). With respect to the former, we require that the
functions are linearly independent. This is a simple way of guaranteeing (in a rather conservative
way) that no two functions ξi lead to “colliding updates” as happens in the known counter-example
presented by Baird [3]. Furthermore, by requiring that

∑
|ξi(x, a)| ≤ 1 for all (x, a) ∈ X × A, we

ensure that ‖Q(θ)‖∞ ≤ ‖θ‖∞, thus making HQ(θ) a contraction in θ (in the sup-norm). This fact
plays an important role in establishing our main convergence result.

To clarify the conditions on the step-size sequences, we start by remarking that, if ε is held fixed,
the algorithm will converge to a neighborhood of the desired point in parameter space. We could
then proceed as follows. As soon as the estimates were “sufficiently close” to this neighborhood, we
could decrease ε and wait for the estimates to, once again, approach a new, smaller neighborhood
of the desired point. We would then decrease ε once again, etc.

This “gross” version of our algorithm illustrates the fact that ε cannot go to zero arbitrarily
fast. In particular, it is necessary to ensure that each component of the estimate vector θt is
“sufficiently” updated as ε is decreased. This clearly depends on the smooth Dirac approximation
chosen. The relation between the two referred entities (gε and the rate of convergence of εt) is
formalized in the relations (3.7) and the conditions on αt.

Such condition on the step-sizes {αt} can be ensured in different ways (for example, defining
αt from the c-cuts of gε as in [37]). As one final note, we remark that the use of “broader” Dirac
approximations will probably allow faster convergence of εt while “narrower” Dirac approximations
will probably lead to slower convergence of εt.

Finally, since the space B of essentially bounded functions with the sup-norm is a Banach space
(with no orthogonal projection defined), we defined a projection operator P that is non-expansive
in the sup-norm, thus making the combined operator PH a contraction in this norm.

3.3.2 Related work:

The early works by Gordon [17] and Tsitsiklis and Van Roy [40] provide convergence analysis
for several RL methods using function approximation. The two referred papers portray similar
results, although with a slightly different setting and focus on variations of dynamic programming
using function approximation. There is also a brief discussion on how stochastic variations of these
algorithms (closer in spirit to the Q-learning algorithm) can be used. These stochastic variations
are essentially equivalent to the Q-learning algorithm with soft-state aggregation portrayed by
Singh et al. [33], as pointed out by Bertsekas and Tsitsiklis [6].

Soft-state aggregation is extensively studied in [33]. In this work, the authors propose the use
of a “soft”-partition of the state-space (each state x belongs to region i with a probability pi(x))
and an “average” Q-value Q(i, a) is defined for each region-action pair. Each of these regions is
then treated as a “hyper-state” and the method uses standard Q-learning updates to determine the
average Q-values for each region. The function Q∗ is then approximated for a state-action pair
(x, a) as Q∗(x, a) ≈

∑
i pi(x)Q(i, a).

In a different work, Tsitsiklis and Van Roy [41] provide a detailed analysis of temporal difference
methods for policy evaluation. Given a stationary policy π whose value function V π is to be
estimated, a parameterized linear family V of functions is used to approximate V π. The authors

4In this context, “interesting” regions are those with positive µX measure.

Technical Report RT-602-07, March 2007 9

analyze the sequence of parameters {θt} obtained with the update rule

θt+1 = θt + αtξ(xt)
(
rt + γVθt(xt+1)− Vθt(xt)

)
(3.10)

and establish that the trajectories of this sequence closely follow those of an associated globally
asymptotically stable ODE.5 This implies that {θt} converges w.p.1 to the unique equilibrium
point of such ODE. The authors provide an interpretation of the obtained limit point as a fixed
point of a composite operator PT(λ), where P is the orthogonal projection into V and T(λ) is
the TD operator. The authors also provide error bounds on the obtained approximation. Several
authors later proposed variations of the fundamental method [7, 12, 13] that include off-policy
policy evaluation algorithms [30].

Szepesvári and Smart [37] proposed a version of Q-learning that approximates the optimal
Q-values at a given set of sample points {(xi, ai), i = 1, . . . , N} and then uses interpolation to
estimate Q∗ at any query point. This method, dubbed interpolation-based Q-learning (IBQL) uses
the update rule

θt+1(i) = θt(i) + αt(i)gε(xi, ai;xt, at)
(
rt + max

u∈A
Qθt(xt+1, b)− θt(i)

)
. (3.11)

This update rule uses a spreading function gε as in multi-state Q-learning [31]. The authors
establish convergence w.p.1 of the algorithm and provide an interpretation of the limit point as
the fixed-point of a composite operator PĤ, where P is a projection-like operator and Ĥ can be
interpreted as a modified Bellman operator.

We emphasize the similarity between the update rules in (3.11) and (3.6). The fundamental
difference between these two methods lies on the fact that IBQL only makes use of the estimated
Q-function to predict the value of the next state, as seen in (3.11). Therefore, the updates of IBQL
rely on a vector d̂t of modified temporal differences with ith component given by

d̂t(i) = rt + γmax
u∈A

Qθt(xt+1, u)− θt(i) =

= rt + γmax
u∈A

Qθt
(xt+1, u)−Qθt

(xi, ai).

Notice that each d̂t(i) is not a temporal-difference in the strict sense, since it does not provide
a one-step estimation “error”. This means that the information provided by d̂t(i) may lead to
“misleading” updates. Although not affecting the convergence of IBQL in the long-run, IBQL may
exhibit slower convergence because of this. On the other hand, if IBQL is used with a vanishing ε,
the effect of these misleading updates will vanish as t→∞. In the experimental results portrayed
by Szepesvári and Smart [37], a vanishing ε was used. Nevertheless, IBQL exhibited initially slower
convergence than of other methods, probably because of this reported effect.

We also remark that, in [37], the convergence result requires the underlying Markov chain to be
positive Harris and aperiodic. These conditions are actually weaker than the geometric ergodicity
required by our result. However, in many practical situations, the former conditions will actually
imply the latter.6 This means that the conditions on the problem required in Theorem 3.1 are
essentially similar to those in [37] placing the results of both papers in a common line of work and,
basically, leading to concordant conclusions.

Finally, we also refer the close relation between the method in Subsection 3.2 and the algorithm
described by Borkar [8]. In the aforementioned work, Borkar provides a convergence analysis of
what we may refer to as functional Q-learning. This functional Q-learning can be seen as an exten-
sion of classical Q-learning to functional spaces, and arises from the approach proposed by Baker [4]
to stochastic approximation in function spaces. The update equation for this method is fundamen-
tally similar to (3.6). The main difference is that, while we consider only a fixed, finite set of points
I = {(x1, a1), . . . , (xM , aM)}, the algorithm by Borkar [8] maintains a complete representation of

5Actually, the update rule featured in [41] is more general than the one in (3.10), as it includes the use of eligibility
traces to speed convergence. We considered the simpler version in (3.10) to ease the presentation.

6An aperiodic, positive Harris chain is geometrically ergodic as long as supp µX has non-empty interior.

10 Institute for Systems and Robotics

Q∗, each component of which is updated at each iteration. Clearly, maintaining such a represen-
tation of Q∗ is computationally impossible. Therefore, the algorithm by Borkar [8] boils down to
maintaining a complete record of the history of past events H = {(x0, a0), . . . , (xt, at), . . .} and of
the estimates Qt at each of these points. Then, the value of Q∗ at a generic point (x, a) ∈ X ×A
is estimated as

Qt+1(x, a) = Q0(x, a) +

t∑
k=0

αkgεk (xk, ak; x, a)
[
rk + γ max

u∈A
Qt(xk+1, u)−Qt(xk, ak)

]
.

4 Partially observable Markov decision processes
Recall that, in a Markov decision process (X ,A,P, r, γ), an agent acts at each time instant based
on the current state of the environment and so as to maximize its expected total discounted reward.
However, if the current state is unknown and the agent has available only a noisy observation of it,
the elegant theory and effective algorithms developed for Markov decision processes are in general
not applicable, even in the simpler case of finite X .

Partially observable Markov decision processes (POMDPs) present a complex challenge due to
the remarkable complications arising from the “simple” consideration of partial state observability.
Exact solution methods for POMDPs generally consist on dynamic-programming based iterative
procedures and have been found computationally too expensive for systems with more than a
few dozen states [24, 28]. This has led many researchers to focus on developing approximate
methods using a variety of approaches. We refer to [1, 14] for good surveys on POMDP exact and
approximate methods.

Some approximate solution methods rely on value-based reinforcement learning algorithms such
as Q-learning. Examples include the Linear-Q algorithm [23], the SPOVA-RL algorithm [29] or the
Fast-RL algorithm [18]. A thorough analysis of several such methods can also be found in [14].

In this section we discuss how our results from the previous section can be applied to POMDPs.
We identify a set of conditions on POMDPs that ensure the applicability of the method in Section 3.
As a side-note, we remark that the Linear-Q algorithm referred above can be cast as a simple
variation of the method described in Section 3. Our analysis in this section can easily be adapted
to provide a formal proof of the convergence of this algorithm.

4.1 Partial observability and internal state
Let (X ,P) be a finite state-space Markov chain. Let Z be a finite set of possible observations
and suppose that, at each time instant, the the state Xt of the chain is unaccessible. Instead, a
random measurement Zt is “observed” which depends on the state Xt according to an observation
probability given by

P [Zt = z | Xt = x] = O(x, z), (4.1)

A partially observable Markov chain is a 4-tuple (X ,Z,P,O), where X and Z are, respectively,
the state and observation spaces (both considered finite) and P and O are the transition and
observation probability matrices.

Let bt be a discrete probability measure on X conveying the probability distribution of the state
Xt over the set X at time instant t. Since X is assumed finite, bt is a vector with xth component

bt(x) = P [Xt = x | Ft] , (4.2)

where Ft is the history up to time t. Suppose that at time instant t the chain is in state x ∈ X
with probability bt(x) and a transition occurs, with an observation Zt+1 = z made at instant t+1.
Then it holds that

bt+1(y) =
∑

x∈X bt(x)P(x, y)O(y, z)∑
x,w∈X bt(x)P(x,w)O(w, x)

. (4.3)

It is clear from (4.3) that bt+1 is Markovian in its dependence of the past history. Therefore, we
define from bt a sequence {Bt} of random variables, each taking the value Bt = bt at time instant

Technical Report RT-602-07, March 2007 11

t. Since each bt is a probability vector with, say, n components, Bt lies in the n-dimensional
probability simplex Sn.

Summarizing, for any partially observable Markov chain (X ,Z,P,O) there is an equivalent fully-
observable Markov chain (Sn, P̂), where the kernel P̂ is given, for any b ∈ Sn and any measurable
set U ⊂ Sn, by

P̂(b, U) =
∑

z

∑
x,y

b(x)P(x, y)O(y, z)IU (B(b, z)),

where B(b, z) is the vector obtained from b using (4.3) with observation z and IU is the indicator
function for the set U . Notice that the xth coordinate of vector Bt describes the belief that the
underlying state of the chain is Xt = x, and it is common to refer to the b vectors as belief-states.

Notice that, by considering the chain (Sn, P̂) of beliefs instead of the partially observable chain
(X ,Z,P,O) we move from a finite, partially observable Markov chain with state-space X to an
infinite, fully observable Markov chain with state-space Sn. We now identify conditions on P
and/or O that ensure the chain (Sn, P̂) to be uniformly ergodic.

Theorem 4.1. Let (X ,Z,P,O) be a partially observable Markov chain, where the chain (X ,P) is
irreducible and aperiodic. Suppose that there is an observation z ∈ Z and a state x∗ ∈ X such
that, for all y ∈ X , O(y, z) = δ(x∗, y). Then, the Markov chain (Sn, P̂) is uniformly ergodic.

Proof See Section B. 2

4.2 POMDPs and associated MDPs

A tuple (X ,A,Z,P,O, r, γ) is a partially Observable Markov Decision Process (POMDP), where
X ,A,P, r and γ are as defined in Section 2, Z is the observation-space and O represents the
(action-dependent) observation probabilities. We consider X , A and Z to be finite sets.

Using a development entirely similar to the one presented in the previous subsection, given a
POMDP (X ,A,Z,P,O, r, γ) we can derive a fully observable MDP (Sn,A, P̂, r̂, γ), where, for each
a ∈ A, P̂ and r̂ are defined as

P̂a(b, U) =
∑

z

∑
x,y

b(x)Pa(x, y)Oa(y, z)IU (B(b, a, z));

r̂(b, a, b′) =
∑
x,y

b(x)Pa(x, y)r(x, a, y),

where B(b, a, z) is the updated probability vector given action a and observation z with yth com-
ponent given by

B(b, a, z)y =
∑

x∈X bt(x)Pa(x, y)Oa(y, z)∑
x,w∈X bt(x)Pa(x,w)Oa(w, x)

.

Notice that the reward r̂(b, a, b′) corresponds to the expected immediate reward for being in each
state x with probability b(x) and taking action a. As expected, it does not depend on b′.7

This new MDP is an infinite state-space counterpart to the partially observable Markov decision
process (X ,A,Z,P,O, r, γ) and we are interested in applying the methods from the previous section
to this continuous-state MDP.

Notice that, even if the complete POMDP model is known, the use of a simulation-based
solution may still be preferable to the computationally heavier, exact methods. On the other
hand, it may happen that the reward r is unknown and, therefore, recurring to simulation-based
methods is the only alternative available. Finally, we emphasize that, in order to use the methods
from the previous section, the MDP (Sn,A, P̂, r̂, γ) needs to be fully observable, i.e., the beliefs
bt must be computable at every time step t. This means that the agent must know the model
parameters P and O.

7Notice that the rewards do not depend on the observations and the belief b′ is a function of the current belief,
action and observation, so it is natural that r̂ is independent of b′.

12 Institute for Systems and Robotics

In the new MDP (Sn,A, P̂, r̂, γ), it is straightforward to define the optimal value function
V ∗ : Sn −→ R, verifying

V ∗(b) = max
a∈A

E
[
r̂(b, a, b′) + γV δ(b′)

]
,

and the optimal Q-function, verifying

Q∗(b, a) = E
[
r(b, a, b′) + γmax

u∈A
Q∗(b′, u)

]
.

More intuitive and well-known expressions for these functions can readily be obtained by replacing
P̂ and r̂ by the corresponding definitions, yielding

V ∗(b) = max
a∈A

∑
x,y∈X

b(x)Pa(x, y)

[
r(x, a, y) + γ

∑
z∈Z

Oa(y, z)V ∗(bz)

]
;

Q∗(b, a) =
∑

x,y∈X
b(x)Pa(x, y)

[
r(x, a, y) + γ

∑
z∈Z

Oa(y, z) max
b∈A

Q∗(bz, b)

]
.

To apply the method from Section 3 to the MDP M = (Sn,A, P̂, r̂, γ) with guaranteed con-
vergence, we need to check if M verifies all conditions on the problem required in Theorem 3.1.
This condition is concerned with the geometric ergodicity of the chain obtained with the learning
policy. Combining Theorem 3.1 with Theorem (4.1), it is immediate that the Q-learning algorithm
with linear function approximation analyzed in Section 3 can be applied to POMDPs with guar-
anteed convergence, as long as the underlying MDP is ergodic and there is a distinguishable state
x∗ ∈ X . We note that ergodicity of the underlying MDP is a standard assumption in classical RL
methods and, therefore, partial observability simply requires the single additional condition of a
distinguishable state.

5 Conclusions and future work

In this paper we have analyzed the convergence of Q-learning with linear function approximation.
Given a linear familyQ of functions, we defined an update rule that “relies” on a projection operator
P defined in the space of (essentially) bounded functions. For the algorithm thus obtained we
identified the conditions under which convergence w.p.1 is guaranteed. We also showed the limit
function to verify the fixed-point recursion

Qθ∗(x, a) = (PHQθ∗)(x, a)

and discussed the relation between the method and results in this paper and those in related
works such as [8, 37]. Finally, we showed that partially observable Markov decision processes can
be addressed by reinforcement learning algorithms using function approximation as long as the
typical convergence conditions are verified for the underlying Markov decision process and there
is, at least, one observable state.

Several important remarks are in order. First of all, the error bound in Theorem 3.1 is given
as a function of the quantity ‖PQ∗ −Q∗‖. Notice that the function PQ∗ can be interpreted as
the “best” representation of Q∗ in Q. The error bound in Theorem 3.1 means that the obtained
approximation is, at most, “almost as good” as PQ∗. It also means that, this approximation may
be of little use, if the space Q poorly represents the desired function: the closest function in Q will
still be a poor approximation, and there are no guarantees on its practical usefulness (in terms
of the corresponding greedy policy). Notice nevertheless that, if Q∗ ∈ Q, the method will deliver
the optimal function Q∗. Therefore, when using function approximation, the space Q should be
chosen so as to include all available information regarding the true function to be estimated. The
problem of how to choose the basis functions is currently the target of intense research in the RL
community. Some work has been done in this area [16, 22, 25, 42], but a lot more can be done.

Technical Report RT-602-07, March 2007 13

A second remark concerns the usefulness of the algorithm in Section 3 if a fixed policy must
be used during learning (instead of a policy that depends on the estimates Qt). Although the
result described in the paper considers a fixed learning policy, it is possible to extend this result
to encompass the use of a policy πθ that depends continuously on θ. In particular, if the following
condition holds for every (x, a) ∈ X ×A

|πθ(x, a)− πθ′(x, a)| ≤ C ‖θ − θ′‖ ,

with C > 0, it is possible to extend the conclusions of Theorem 3.1 to algorithms using θ-dependent
policies. Further work can explore results on the stability of perturbed ODEs to extend the funda-
mental ideas in this paper to address the convergence of on-policy learning algorithm (e.g., SARSA).

Also, the methods proposed make no use of eligibility traces. It seems likely that the results in
this paper can be modified so as to accommodate eligibility traces and thus improve their overall
performance.

Thirdly, we comment on the results presented in Section 3. In this section, we described the use
of the algorithm in Section 3 to POMDPs by considering equivalent, fully observable MDPs. Recall
that tracking the state of an associated MDP consists in tracking the belief-state bt of the original
POMDP. As already stated, this implies that the agent must know the parameters P and O of the
POMDP. This is less general than the approach adopted in many RL methods, where no model of
the system is assumed. However, in several practical applications (e.g., robotic applications) this
is a reasonable assumption.

Finally, notice that the overall conditions required to ensure convergence of the methods in
Section 3 in partially observable scenarios are similar to the requirements for convergence in fully
observable scenarios. Convergence in partially observable scenarios simply requires one extra condi-
tion: that at least one state is identifiable. If we consider that, in many situations, the reinforcement
function provides additional information on the underlying state of the system, the existence of a
distinguishable state may be a less stringent condition than it appears at first sight. Nevertheless,
it is likely that results on the ergodic behavior of the posterior probabilities of hidden Markov
models may be adapted so as to alleviate this condition.

Acknowledgements
The authors would like to acknowledge the helpful discussions with Prof. João Xavier and the
useful comments from the anonymous reviewers that helped to greatly improve the paper.

References
[1] Douglas A. Aberdeen. A (revised) survey of approximate methods for solving partially observable

Markov decision processes. Technical report, National ICT Australia, Canberra, Australia, 2003.

[2] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted learning for control.
Artificial Intelligence Review, 11(1-5):75–113, 1997.

[3] Leemon C. Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML’95), pages 30–37, San
Francisco, CA, 1995. Morgan Kaufman Publishers.

[4] W. Baker. Learning via stochastic approximation in function space. PhD Thesis, 1997.

[5] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using real-time dynamic
programming. Technical Report UM-CS-1993-002, Department of Computer Science, University of
Massachusetts at Amherst, 1993.

[6] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Optimization and Neural
Computation Series. Athena Scientific, Belmont, Massachusetts, 1996.

[7] Dimitri P. Bertsekas, Vivek S. Borkar, and Angelia Nedić. Improved temporal difference methods with
linear function approximation, chapter 9, pages 235–260. Wiley Publishers, 2004.

14 Institute for Systems and Robotics

[8] Vivek S. Borkar. A learning algorithm for discrete-time stochastic control. Probability in the Engi-
neering and Informational Sciences, 14:243–258, 2000.

[9] Vivek S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

[10] Vivek S. Borkar and Sean P. Meyn. The O.D.E. method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

[11] Justin Boyan and Andrew Moore. Generalization in reinforcement learning: Safely approximating the
value function. In G. Tesauro, D.S. Touretzky, and T.K. Lee, editors, Neural Information Processing
Systems 7, pages 369–376, Cambridge, MA, 1995. The MIT Press.

[12] Justin A. Boyan. Least-squares temporal difference learning. In Proceedings of the 16th Interna-
tional Conference on Machine Learning (ICML’99), pages 49–56, San Francisco, CA, 1999. Morgan
Kaufmann.

[13] Justin A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learning,
49:233–246, 2002.

[14] Anthony R. Cassandra. Exact and approximate algorithms for partially observable Markov decision
processes. PhD thesis, Brown University, May 1998.

[15] Bernard Delyon. General results on the convergence of stochastic algorithms. IEEE Transactions on
Automatic Control, AC-41(9):1245–1256, 1996.

[16] Robert Glaubius and William D. Smart. Manifold representations for value-function approximation
in reinforcement learning. Technical Report 05-19, Department of Computer Science and Engineering,
Washington University in St. Louis, 2005.

[17] Geoffrey J. Gordon. Stable function approximation in dynamic programming. Technical Report
CMU-CS-95-103, School of Computer Science, Carnegie Mellon University, 1995.

[18] Qiming He and Mark A. Shayman. Solving POMDPs by on-policy linear approximate learning algo-
rithm. In Proceedings of the Conference on Information Sciences and Systems. Princeton University,
2000.

[19] Morris W. Hirsch. Convergent activation dynamics in continuous time networks. Neural Networks, 2:
331–349, 1989.

[20] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185–1201, 1994.

[21] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. In
Proceedings of the 15th International Conference on Machine Learning (ICML’98), pages 260–268,
San Francisco, CA, 1998. Morgan Kaufmann Publishers.

[22] Philipp W. Keller, Shie Mannor, and Doina Precup. Automatic basis function construction for ap-
proximate dynamic programming and reinforcement learning. In Proceedings of the 23rd International
Conference on Machine Learning (ICML’06), pages 449–456, New York, NY, 2006. ACM Press.

[23] Michael L. Littman, Anthony R. Cassandra, and Leslie P. Kaelbling. Learning policies for partially
observable environments: Scaling up. In Armand Prieditis and Stuart Russell, editors, Proceedings
of the 12th International Conference on Machine Learning (ICML’95), pages 362–370, San Francisco,
CA, 1995. Morgan Kaufmann Publishers.

[24] Christopher Lusena, Judy Goldsmith, and Martin Mundhenk. Nonapproximability results for partially
observable Markov decision processes. Journal of Artificial Intelligence Research, 14:83–103, 2001.

[25] Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function adaptation in temporal difference
reinforcement learning. Annals of Operations Research, 134(1):215–238, February 2005.

[26] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability. Communications and
Control Engineering Series. Springer-Verlag, New York, 1993.

Technical Report RT-602-07, March 2007 15

[27] Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine Learning, 49:161–178,
2002.

[28] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov chain decision processes.
Mathematics of Operations Research, 12(3):441–450, 1987.

[29] Ronald Parr and Stuart Russell. Approximating optimal policies for partially observable stochastic
domains. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 1088–
1094, 1995.

[30] Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning with
function approximation. In Proceedings of the 18th International Conference on Machine Learning
(ICML’01), pages 417–424, San Francisco, CA, 2001. Morgan Kaufmann.

[31] Carlos Ribeiro and Csaba Szepesvári. Q-learning combined with spreading: Convergence and results.
In Proceedings of the ISRF-IEE International Conference: Intelligent and Cognitive Systems (Neural
Networks Symposium), pages 32–36, 1996.

[32] Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. Technical
Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department, 1994.

[33] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning with soft state
aggregation. In Advances in Neural Information Processing Systems, volume 7, pages 361–368. 1994.

[34] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:
9–44, 1988.

[35] Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. Advances in Neural Information Processing Systems, 8:1038–1044, 1996.

[36] Richard S. Sutton. DYNA, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2(4):160–163, 1991.

[37] Csaba Szepesvári and William D. Smart. Interpolation-based Q-learning. In Proceedings of the 21st
International Conference on Machine learning (ICML’04), pages 100–107, New York, USA, July 2004.
ACM Press.

[38] Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994.

[39] Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM, 38
(3):58–68, 1995.

[40] John N. Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic program-
ming. Machine Learning, 22:59–94, 1996.

[41] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42(5):674–690, May 1996.

[42] Benjamin Van Roy. Learning and value function approximation in complex decision processes. PhD
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, June 1998.

[43] Christopher Watkins and Peter Dayan. Technical note: Q-learning. Machine Learning, 8:279–292,
1992.

[44] Christopher J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College, University
of Cambridge, May 1989.

16 Institute for Systems and Robotics

A Proof of Theorem 3.1
We separately establish each of the three assertions of Theorem 3.1. To prove the first assertion, we
establish the trajectories {θt} generated by algorithm (3.6) to closely follow those of an associated
ODE with a globally asymptotically stable equilibrium point. As long as the iterates of the algo-
rithm remain bounded, this will imply the convergence to the equilibrium point of the associated
ODE.

To prove the second assertion of Theorem 3.1, we provide an interpretation of the equilibrium
point of the associated ODE as the fixed point of a composite operator. This interpretation will
then lead to the third assertion of Theorem 3.1.

A.1 Convergence of the iterates
To prove the convergence of the sequence {θt} generated by (3.6), we follow a similar argument to
that in [8, 9].

Consider a general ODE in RM ,

d

dt
Z(t) = h(Z(t)), (A.1)

for a Lipschitz map h : Rp −→ Rp. Further suppose that the ODE (A.1) has a globally asymptot-
ically stable equilibrium Z∗.

Given any T > 0 and σ > 0, a bounded measurable function z : R+ −→ RM is a (T, σ)-
perturbation of (A.1) if there is a sequence Tn of positive real numbers such that T0 = 0, Tn →∞,
with Tn+1 − Tn > T and the following holds

sup
t∈[Tn,Tn+1]

‖Zn(t)− z(t)‖ ≤ σ,

where Zn(t) is a solution of (A.1) defined in the interval [Tn, Tn+1].
We now introduce the Hirsch lemma [19], whose proof can be found, for example, in [9].

Lemma A.1 (Hirsch Lemma). Given any ρ > 0 and T > 0, there is a σ0 such that, for all σ < σ0,
every (T, σ)-perturbation of (A.1) converges to an ρ-neighborhood of Z∗.

Consider the ODE
d

dt
θt(i) = (℘HQ(θt))i − θt(i). (A.2)

It is not hard to see that this ODE has a globally asymptotically stable equilibrium θ∗ verifying

θ∗(i) = (℘HQ(θ∗))i

since, as remarked in Subsection 3.2, ℘ is a non-expansion in the sup-norm, H is a contraction in
the sup-norm and ‖ξi‖∞ = 1 for i = 1, . . . ,M .

Consider, on the other hand, the ODE

d

dt
θε

t (i) = hε(θt) =

=
∫
gε(xi, ai;x, a)

[
(HQθε

t
)(x, a)−Qθε

t
(x, a)

]
dµπ(x, a).

(A.3)

By hypothesis, gε(xi, ai; ·) → δ(xi,ai) as ε → 0. By taking θε
0 = θ0, a standard argument using

the Gronwall inequality leads to the conclusion that the solutions θε
t of (A.3) verify θε

t → θt as
ε → 0, and this convergence holds uniformly in compact time intervals.8 This implies that, given
any T > 0 and σ > 0, θε

t is a (T, σ
2)-perturbation of (A.2) for sufficiently small ε.

8In particular, in an interval [t, t + τ] we have

‖θε
t − θt‖ ≤ Kε

(
eCτ − 1

)
,

for some positive constant C and some positive, ε-dependent constant Kε that goes to 0 with ε.

Technical Report RT-602-07, March 2007 17

Our purpose is to establish that, for fixed ε, the trajectories of the algorithm (3.6) closely follow
those of (A.3). Thus, for fixed ε, rewrite (3.6) in the form

θt+1 = θt + αtH
ε(θt, Yt+1), (A.4)

where Yt+1 = (Xt, At, Xt+1). Since the chain {Xt} is geometrically ergodic and π(x, a) > 0 for
µπ-almost all x ∈ X , it follows that so is the chain {Yt}.

Using the geometric ergodicity of the chain {Yt} and the Poisson equation involving Hε(θ, Y),
we can rewrite (A.4) as

θt+1 = θt + αth
ε(θt) + αt(et+1 + ηt+1), (A.5)

where, for each i = 1, . . . ,M ,
∑∞

t=0 αtet(i) < ∞ and ‖ηt‖ → 0. To see that this is so, recall that
the Poisson equation involving Hε(θ, Y) is given by

υθ(y)− (Pπυθ)(y) = Hε(θ, y)− hε(θ),

where υθ is the solution for a given θ. Under the geometrical ergodicity of {Yt} the solution for
this equation always exists [26] and we can rewrite

Hε(θt, Xt+1)i = hε(θt)i + υθt
(Xt+1)i − (Pπυθt

)(Xt+1)i =
= hε(θt)i + υθt

(Xt+1)i − (Pπυθt
)(Xt)i+

+ (Pπυθt
)(Xt)i − (Pπυθt+1)(Xt+1)i+

+ (Pπυθt+1)(Xt+1)i − (Pπυθt
)(Xt+1)i =

= hε(θt)i + ζt+1(i) + (ut(i)− ut+1(i)) + ηt+1(i),

with

ζt+1(i) = υθt
(Xt+1)i − (Pπυθt

)(Xt)i;
ut(i) = (Pπυθt

)(Xt)i;
ut+1(i) = (Pπυθt+1)(Xt+1)i;
ηt+1(i) = (Pπυθt+1)(Xt+1)i − (Pπυθt

)(Xt+1)i.

Finally, setting et+1(i) = ζt+1(i) + (ut(i) − ut+1(i)) leads to (A.5). The two aforementioned
properties of et and ηt, namely

∑∞
t=0 αtet(i) < ∞ and ‖ηt‖ → 0, arise as consequences of the

geometric ergodicity assumption on the underlying Markov chain and of the properties of the
solution υθ of the Poisson equation [15, 26].

We now proceed as in [9]. Define the sequences

τ0 = 0; τk =
k−1∑
t=0

αt;

T0 = 0; Tn+1 = min {τk | τk > Tn + T} ,

and let {θt} be a sample trajectory obtained using (A.4) with constant ε. From {θt} build the
continuous-time process θ̄0(t) by taking θ̄0(τk) = θk and using linear interpolation in the interval
[τk, τk+1]. In particular (A.5) yields

θ̄0(τt+1) = θ̄0(τt) + (τt+1 − τt)hε(θ0(τt)) + ρ(τt), (A.6)

with
ρ(τt) = αt(et+1 + ηt+1).

By interpreting (A.6) as a discretized version of the ODE (A.3) with noise ρ(τt), we can once
again resort to the Gronwall inequality to bound the distance between θ̄0(t) and θε

t in each interval
[Tk, Tk+1] by a constant that can be made arbitrarily small for large enough k. But this means
that, for any σ > 0, the process θ̄t0(t) = θ̄0(t + t0) is a (T, σ

2)-perturbation of (A.3) for t0 large
enough.

18 Institute for Systems and Robotics

By combining this conclusion with the previous conclusion on θε
t , we see that, for any T > 0

and σ > 0, θ̄t0(t) is a (T, σ)-perturbation of (A.2) (for ε sufficiently small).
Consider now the ODE

d

dt
εt = 0. (A.7)

and the approximate process

εt+1 = εt − αt
βt

αt
εt. (A.8)

Repeating the exact same procedure used for θ̄0t , and by noticing that βt = o(αt), we build a
process ε̄t0

t such that, for any σ > 0, ε̄t0
t is a (T, σ)-perturbation of (A.7) for t0 large enough.

Finally, since
∑

t α̂t(i) = ∞, this leads to the conclusion that, given any T > 0 and σ > 0, (θ̄t0
t , ε̄

t0
t)

is a (T, σ)-perturbation of the system of ODEs

d

dt
θt(i) = (℘HQ(θt))i − θt(i); (A.9a)

d

dt
εt = 0, (A.9b)

for t0 large enough.
We now notice that, in general, a smaller ε will require a larger t0 to ensure that θ̄t0(t) is

a (T, σ)-perturbation of (A.3). On the other hand, εt as generated by (3.6b) converges to 0.
Therefore, to guarantee that there is t0 such that (θ̄t0

t , ε̄
t0
t) is a (T, σ)-perturbation of (A.9), it is

necessary to ensure that εt approaches zero sufficiently slowly. By choosing the sequence αt so
that

∑
t α̂t(i) = ∞, we ensure that the trajectories {θt} approach the trajectories of the ODE

(A.3) faster than gεt approaches the Dirac delta and are in position to apply the Hirsh lemma to
conclude that, for any ρ > 0, the process (θ̄t0

t , ε̄
t0
t) converges to a ρ-neighborhood of (θ∗, 0). This,

in turn, implies that θt → θ∗ as long as the sequence {θt} remains bounded, which we establish in
the continuation.

A.2 Boundedness of the iterates
To establish the boundedness of the iterates, we replicate the procedure by Borkar and Meyn [10].

Let {θt} be a trajectory generated by (3.6). We build a scaled sequence {θ̂t} by setting

θ̂t =
θt

λn

where λn = max {‖θTn
‖ , 1}, for every t in [Tn, Tn+1) and Ti are as defined in Subsection A.1. If

the sequence θt is unbounded, this means that lim supλn = ∞, so we analyze the behavior of θ̂t

as λn →∞.
In Subsection A.1, we established the trajectories {θt} to closely follow those of the ODE

d

dt
θt = h(θt),

where h(θ) = ℘HQ(θ)− θ. For the scaled sequence θ̂t, we now consider the function hλ(θ), given
by

hλ(θ) =
h(λθ)
λ

,

with λ > 0. Notice that, as λ→∞, hλ approaches the function h∞ given by

h∞(θ)i = γmax
b∈A

∫
ξ>(y, b)θPai(xi, dy)− θi.

Define the operator F : RM −→ RM with ith component given by

F(θ)i = γmax
b∈A

∫
ξ>(y, b)θPai(xi, dy).

Technical Report RT-602-07, March 2007 19

This operator is a contraction in the sup-norm (due to the fact that
∑

i |ξi(x, a)| ≤ 1) and, hence
has a single fixed point. Since the origin is a fixed point of F, the ODE associated with h∞
has a single equilibrium point at the origin and this equilibrium point is globally asymptotically
(exponentially) stable.

By repeating the procedure used in Subsection A.1, we can build by interpolation a continuous
time process from the scaled sequence θ̂t. In each interval [Tn, Tn+1], this continuous-time process
is a (T, σ)-perturbation of the ODE,

d

dt
θt = hλn(θt), (A.10)

for any T > 0 and any σ > 0 (by eventually considering a time-shifted version of the continuous
time process, as in Subsection A.1). This implies the boundedness of θt as a consequence.

In fact, suppose that {θt} is not bounded. This implies that λn → ∞ eventually along a
subsequence. Since the solutions of (A.10) converge exponentially fast to an arbitrarily small
neighborhood of the origin (depending on λn), by taking n large enough we can ensure that∥∥θ̂Tn+1

∥∥ ≤ C for any C < 1. But this implies that∥∥θTn+1

∥∥
‖θTn

‖
≤ C

or, equivalently,
∥∥θTn+1

∥∥ ≤ C ‖θTn‖. Therefore, whenever θt leaves, say, the unit ball in RM , it
returns exponentially fast toward it, and θt remains bounded.

We refer to [8, 10], where a similar process is apllied to establish boundedness of an iterative
process.

A.3 Limit of convergence and error bounds

We have established that the sequence {θt} generated by (3.6) converges w.p.1 to a point θ∗. The
limit point θ∗ is the globally asymptotically stable equilibrium of the ODE (A.2), verifying the
following recursive relation:

θ∗ = ℘HQ(θ∗).

This provides an interpretation for the limit point of {θt} as the fixed point of the combined
operator ℘HQ(·), where Q is now understood as a mapping from RM to B.

To conclude the proof of Theorem 3.1, it remains to establish statement 3, thus providing the
error bounds for the approximation. To this, we perform some explicit computations, yielding

‖Q(θ∗)−Q∗‖∞ = ‖Q(θ∗)−Q(℘Q∗) + Q(℘Q∗)−Q∗‖∞ ≤
≤ ‖Q(θ∗)−Q(℘Q∗)‖∞ + ‖Q(℘Q∗)−Q∗‖∞ =

= ‖Q(θ∗ − ℘Q∗)‖∞ + ‖Q(℘Q∗)−Q∗‖∞ =

= ‖Q(℘HQ(θ∗)− ℘HQ∗)‖∞ + ‖Q(℘Q∗)−Q∗‖∞

Using the fact that ‖ξi‖ = 1, we get

‖Q(θ∗)−Q∗‖∞ ≤
= ‖℘HQ(θ∗)− ℘HQ∗‖∞ + ‖Q(℘Q∗)−Q∗‖∞ ≤
= γ ‖Q(θ∗)−Q∗‖∞ + ‖Q(℘Q∗)−Q∗‖∞ ,

and this finally leads to

‖Q(θ∗)−Q∗‖∞ ≤ 1
1− γ

‖Q(℘Q∗)−Q∗‖∞ .

This concludes the proof of Theorem 3.1.

20 Institute for Systems and Robotics

B Proof of Theorem 4.1

Before embarking in the proof of Theorem 4.1, we briefly survey some fundamental concepts on
Markov chains. The proofs of all results stated can be found in [26].

B.1 Markov chains

We start by reviewing the concept stability in the context of Markov chains. We refer to the
book by Meyn and Tweedie [26] for a more detailed treatment and formal proofs of the statements
presented here.

A homogeneous Markov chain is a discrete-time stochastic process {Xt} defined by a pair
(X ,P), where X is the state-space and P is a transition probability kernel defining the transition
probabilities

P(x,U) = P [Xt ∈ U | Xt−1 = x] ,

which are independent of the particular time instant t considered. The kernels Pm and Ka, defined
as

Pm(x, U) =
∫
X

P(y, U)Pm−1(x, dy); 9

Ka(x, U) =
∞∑

k=0

a(k)Pk(x,U),

are the m-step transition and sampled-chain kernels, respectively; a denotes a discrete probability
measure on N, known as a sampling distribution. Note that, if a(k) = 1 for k = m and 0 otherwise,
Ka = Pm.

A set C ⊂ X is νm-small if there exists some m > 0 and a non-trivial measure νm such that

Pm(x, U) ≥ νm(U),

for all x ∈ C and all measurable sets U ⊂ X . It is νa-petite if there exists a non-trivial measure νa

such that
Ka(x,U) ≥ νa(U),

where a is some sampling distribution.
Given an arbitrary measurable set U ⊂ X , the first return time to U , τU , is defined as

τU = min
t∈T

{Xt ∈ U, t ≥ 1} .

Given a measure ϕ, a Markov chain is ϕ-irreducible if

ϕ(U) > 0 ⇒ P [τU <∞ | X0 = x] > 0,

for any x ∈ X and any measurable set U ⊂ X . If a Markov chain (X ,P) is ϕ-irreducible, then there
is a maximal irreducibility measure ψ for which (X ,P) is ψ-irreducible. All maximal irreducibil-
ity measures are equivalent and hence a chain can be classified as being ψ-irreducible without
specifically identifying the the maximal irreducibility measure ψ.10

Given a ψ-irreducible Markov chain (X ,P), it is always possible to determine a maximal family
of disjoint sets D = {D1, . . . , Dd} such that

• For every x ∈ Di, P(x,Di+1) = 1, with i = 1, . . . , d (mod d);

• ψ
(
X −

⋃d
i=1Di

)
= 0.

9We take P1(x, U) = P(x, U).
10Equivalent in this context means that any maximal irreducibility measures are absolutely continuous with

respect to one another.

Technical Report RT-602-07, March 2007 21

Such family D is called a d-cycle. The largest d for which there is a d-cycle for the Markov chain
is called the period of (X ,P). If d = 1, the chain is said to be aperiodic and periodic otherwise.

If X is a locally compact, separable and metrizable topological space, a Markov chain (X ,P)
verifies the Feller property (i.e., is a weak Feller chain) if and only if P maps the set C(X) of all
bounded, continuous functions defined on X into itself. The following result will prove of use later
in our work.

Theorem B.1. Let (X ,P) be a ψ-irreducible Feller chain. If there is an open petite set C such
that ψ(C) > 0, then all compact subsets of X are petite.

Given a Markov chain (X ,P), a probability measure µ is called invariant if∫
X
µ(dx)P(x,U) = µ(U). (B.1)

Stability of Markov chains is deeply related with the convergence of the trajectories of the chain
towards stationarity and motivates the following definitions.

Definition B.1. A Markov chain (X ,P) is ergodic if∣∣P t(x,U)− µ(U)
∣∣ → 0

for any x ∈ X and any U ⊂ X . It is geometrically ergodic if, given any initial measure µ0,

∞∑
t=0

rt
∥∥(µ0P

t)− µ
∥∥ <∞

for some constant r > 1, where ‖·‖ is the total variation norm. If

sup
x∈X

∥∥Pt(x, ·)− µ
∥∥ → 0

as t→∞, the chain (X ,P) is uniformly ergodic.

The following theorem identifies sufficient conditions to guarantee uniform ergodicity and binds
all concepts of ergodicity presented above.

Theorem B.2. For any Markov chain (X ,P) the following are equivalent for a ψ-irreducible,
aperiodic chain:

1. The chain is uniformly ergodic;

2. There are constants r < 1 and R <∞ such that, for all x ∈ X ,∥∥Pt(x, ·)− µ
∥∥ ≤ Rrt;

3. The state space X is petite.

B.2 Three fundamental lemmas
To prove Theorem 4.1, we provide three intermediate results, identifying the conditions under
which

• (Sn, P̂) is ψ-irreducible;

• (Sn, P̂) is aperiodic;

• Sn is petite.

Once these facts are properly established, we make use of Theorem B.2 to establish the assertions
of the Theorem 4.1.

22 Institute for Systems and Robotics

Lemma B.3. Let (X ,Z,P,O) be a partially observable Markov chain. Then, if (X ,P) is irreducible
and there is an observation z ∈ Z and a state x∗ ∈ X such that, for all y ∈ X , O(y, z) = δ(x∗, y),11
the Markov chain (Sn, P̂) is ψ-irreducible.

Proof Since (X ,P) is irreducible, for all y ∈ X there is M ∈ N such that

PM (y, x∗) > 0.

On the other hand, since x∗ is admittedly “observable”, Xt = x∗ ⇒ Bt(y) = δ(x∗, y), where δ
denotes the Kronecker delta-function. Let b∗ = δ(x∗, y). Then,

ϕ(U) =

{
1 if b∗ ∈ U ;
0 otherwise

is an irreducibility measure for (Sn, P̂) since

ϕ(U) > 0 ⇒ Pb[τU <∞] > 0,

for any b ∈ Sn. This implies that there is a maximal irreducibility measure ψ and (Sn, P̂) is
ψ-irreducible. 2 2

Lemma B.4. Let (X ,Z,P,O) be a partially observable Markov chain verifying the conditions of
Lemma B.3. Then, if (X ,P) is aperiodic, so is (Sn, P̂).

Proof Suppose that the conditions of the lemma are met. It is clear that if a d-cycle exists for
(Sn, P̂), with d > 1, then there is a set Dk in the d-cycle such that b∗ ∈ Dk, where b∗ is as defined
in the proof of Lemma B.3. But then Pm(x∗, x∗) > 0 only if m = nd, for some n ∈ N which implies
that x∗ has period d and, since (X ,P) is irreducible, so have all the states in X , and the chain
(X ,P) is periodic with period d. But this is false, by assumption. Then, (Sn, P̂) must be aperiodic
and the proof is complete. 2 2

Lemma B.5. Let (X ,Z,P,O) be a partially observable Markov chain. Then, if the conditions of
Lemmas B.3 and B.4 are met, the state space Sn of the chain {Bt} is petite.

Proof Since (X ,P) is irreducible and aperiodic and X is finite, (X ,P) is ergodic and, consequently,
geometrically ergodic.12 Let b∗ be as defined in the proof of Lemma B.3. Take an arbitrary element
z ∈ Z such that

∑
y P(x∗, y)O(y, z) > 0 and let b∗x = B(b∗, z) be the belief state succeeding b∗ when

observation z occurs. Since
∑

x b
∗
z(x) = 1, this means that there is x ∈ X such that b∗z(x) > 0. Let

J = min
x
{b∗z(x) | b∗z(x) > 0}

I = arg min
x

{b∗z(x) | b∗z(x) > 0} .

Take any 0 < ε1 < J and consider the following set

C = {b ∈ Sn | b(I) > ε1} .

Clearly, the set C is open in Rn and, consequently, it is open in the subspace topology on Sn. On
the other hand, b∗z ∈ C. Since the chain (X ,P) is irreducible by assumption, there is M > 0 such
that

PM−1(I, x∗) > 0.

11Recall that δ(x∗, y) = 1 if x∗ = y and 0 otherwise.
12The two notions coincide in finite state-space chains.

Technical Report RT-602-07, March 2007 23

Let ε2 = PM−1(I, x∗). Using the Chapman-Kolmogorov inequality, for any b ∈ C and any
measurable set U ⊂ Sn,

P̂M (b, U) ≥ P̂M−1(b, {b∗})P̂(b∗, U) =

=
∑
y∈X

b(y)PM−1(y, x∗)P̂(b∗, U) >

> ε1ε2P̂(b∗, U).

Then, νM = ε1ε2P̂(b∗, U) is a non-trivial measure and C is νM -small and, consequently, νδM
-petite.

On the other hand, it is immediate to see that, since b∗z ∈ C, ψ(C) > 0.
Let now f be a bounded continuous function defined on Sn. Then, since Sn is compact and

P̂(b, ·) is a probability measure, (P̂f) is bounded. On the other hand, notice that, for any z ∈ Z,
the n-dimensional function b→ B(b, z) given coordinate-wise by

B(b, z)y =
∑

x∈X b(x)P(x, y)O(y, z)∑
x,w∈X b(x)P(x,w)O(w, x)

, (B.2)

is clearly continuous on b. Then, fz(b) defined for each b and each z ∈ Z as

fz(b) = f(B(b, z)),

is the composition of two continuous functions and, hence, continuous. Finally,

(P̂f)(b) =
∑

z

∑
x,y

b(x)P(x, y)O(y, z)fz(b)

is clearly also a continuous function of b and P̂ maps C(Sn) into C(Sn) and (Sn, P̂) is a weak Feller
chain.

We have established (Sn, P̂) to be a ψ-irreducible Feller chain and have found a petite set C
such that ψ(C) > 0. Theorem B.1 now ensures that all compact subsets of Sn are petite and, since
Sn is a compact subset of itself, Sn is petite and the proof is complete. 2 2

Now Lemmas B.3 through B.5 together with Theorem B.2 trivially establish conclusion of
Theorem 4.1.

