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Abstract We consider the problem of finding a near-optimal policy in
continuous space, discounted Markovian Decision Problems given the tra-
jectory of some behaviour policy. We study the policy iteration algorithm
where in successive iterations the action-value functions of the intermediate
policies are obtained by picking a function from some fixed function set (cho-
sen by the user) that minimizes an unbiased finite-sample approximation to
a novel loss function that upper-bounds the unmodified Bellman-residual
criterion. The main result is a finite-sample, high-probability bound on the
performance of the resulting policy that depends on the mixing rate of the
trajectory, the capacity of the function set as measured by a novel capacity
concept that we call the VC-crossing dimension, the approximation power
of the function set and the discounted-average concentrability of the future-
state distribution. To the best of our knowledge this is the first theoretical
reinforcement learning result for off-policy control learning over continuous
state-spaces using a single trajectory.
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1 Introduction

In industrial control problems gathering data of the controlled system is
often separated from the learning phase: The data is gathered via “field-
experiments”, whence it is taken to the laboratory where it is used to
design a new optimized controller. A crucial feature of these problems is
that the data is fixed and new samples cannot be generated at will. Of-
ten, the data is obtained by observing the controlled system operated using
a existing controller, or policy, henceforth, following standard terminology
in reinforcement learning, called the behaviour policy (Sutton and Barto,
1987, Chapter 5.6).

In this paper we are interested in designing algorithms and proving
bounds on the achievable performance in such settings, where specifically
we assume that the control task can be modelled as a discounted Markov-
ian Decision Problem with continuous state-variables and a finite number
of actions. We shall denote the number of actions by L.

The algorithm studied here is an instance of fitted policy iteration. Like
in policy iteration, the algorithm repeatedly computes an evaluation func-
tion of the policy of the previous step and then uses this evaluation function
to compute the next improved policy. In order to avoid the need of learn-
ing a model, action-value evaluation functions are computed, making the
policy improvement step trivial, just like in the least-squares policy iter-
ation (LSPI) algorithm of Lagoudakis and Parr (2003). However, unlike
LSPI which builds on least-squares temporal difference learning (LSTD)
of Bradtke and Barto (1996), we build our algorithm on the idea of min-
imizing Bellman-residuals. The idea of using Bellman-residuals in policy
iteration goes back at least to Schweitzer and Seidmann (1985) who pro-
posed it for computing approximate state-value functions given the model
of a finite-state and action MDP. The idea is that a small Bellman-error
may yield a good approximation to the policy evaluation function, which
in turn may imply a good final performance. One major obstacle of us-
ing Bellman-residual minimization when learning without model is that the
trivial sample-based approximation of the loss function that uses data from
a single trajectory of the behaviour policy is not an unbiased estimate of
the population Bellman-residual loss function (e.g. Sutton and Barto, 1987,
pp. 200). Here we propose to overcome this problem by using a novel loss
function that upper bounds the loss Bellman-residual loss that does not
suffer from this problem.

Our main result shows that if the trajectory used as the input is suffi-
ciently representative then the performance of the policy returned by our
algorithm improves at a rate of 1/N1/4 (where N is the length of the tra-
jectory) up to a limit set by the choice of the function set FL. To the best
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of our knowledge this is the first result in the literature where finite-sample
error bounds are obtained for an algorithm that works for continuous state-
space MDPs, uses function approximators and considers control learning
in an off-policy setting, i.e., learning from a single trajectory of some fixed
behaviour policy.

One major technical difficulty of the proof is that we have to deal with
dependent samples. The main condition here is that the trajectory should be
sufficiently representative and rapidly mixing. For the sake of simplicity, we
also require that the states in the trajectory follow a stationary distribution,
though we believe that with some additional work this condition could be
removed. The mixing condition, on the other hand, seems to be essential for
efficient learning. The particular mixing condition that we use is exponential
β-mixing, used earlier e.g. by Meir (2000) for analyzing nonparametric time-
series prediction or by Baraud et al. (2001) for analyzing penalized least-
squares regression. The particular mixing condition assumed allows us to
derive polynomial decay rates for the estimation error as a function of the
sample size. If we were to relax this condition to algebraic β-mixing (i.e.,
mixing at a slower rate), the estimation error-bound would decay with the
logarithm of the number of samples, i.e., at a sub-polynomial rate. Hence,
learning is still possible, but could be very slow. Let us finally note that for
Markov processes, geometric ergodicity implies exponential β-mixing (see
Davidov, 1973; or Doukhan, 1994, Chap. 2.4), hence for such processes there
is no loss of generality in assuming exponential β-mixing.

In order to arrive at our bound, we introduce a new capacity concept
which we call the VC-crossing dimension. The VC-crossing dimension of F
is defined as the VC-dimension of a set-system that consists of the zero-
level sets of the pairwise differences of functions from F . A short intuitive
explanation of the need of this concept is that in one step of policy iteration
we attempt to evaluate a policy the is greedy to the action-value function
computed in the previous step. Computing the greedy actions involves com-
paring functions of F (an action-value evaluation function can be given as
a list (f1, . . . , fL) of functions from F , each corresponding to some action
from A), and the set of states when a function f from F majorizes another
function f ′ from F can be given as the set of states where the difference
f − f ′ is greater than zero.

Similarly to bounds of regression, our bounds depend on the approxima-
tion power of the function set, too. One major difference, though, is that in
our case the natural way to measure the approximation power of a function
set is different from how it is done in regression. Whilst in regression, the
approximation power is measured as the minimum distance to the target
(regression) function, we use error measures that reflect whether the func-
tion set fits the policy evaluation operators underlying the MDP in a sense
that will be made precise later.

The bound also depends on the number of steps (K) of policy iteration.
As expected, there are two terms involving K that behave conversely: One
of the terms us the usual one that decays at a geometric rate (the base being
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γ, the discount factor of the MDP). The other term comes from the reuse of
the data throughout all the iterations and this scales with the logarithm of
the number of iterations. Hence, the reuse of data in the iterations makes the
performance degrade at a slow rate, a point that was made just recently by
Munos and Szepesvári (2006) in the analysis of approximate value iteration.
Optimizing the bound in K numerically is straightforward. As a matter of
fact, the optimal value of K will depend e.g. on the capacity of the function
set, the mixing rate and the number of samples. Interestingly, it will not
depend on the approximation-power of the function set.

In order to arrive at our results, we also need to make some assumptions
on the controlled system. In particular, we assume that the state space is
compact and the action space is finite. The compactness condition is purely
technical and can be relaxed in various ways (e.g. by making assumptions
about the stability of the system). The finiteness condition on the action
space, on the other hand, seems to be essential for our analysis to go through.
We also need to make a certain controllability (or rather uncontrollability)
assumption. This particular assumption is used in the method proposed
by Munos (2003) that is used to bound the final weighted-norm error as a
function of the weighted-norm errors made in the intermediate steps of the
algorithm. If we were to use L∞ analysis then the controllability assumption
would not be needed. The difficulty is that since the policy evaluation-
functions are obtained via a least-squares approach, it would be difficult to
derive good L∞ bounds on the errors of the intermediate steps.

The particular assumption studied here requires that the rate at which
the future-state distribution can be concentrated (by selecting a non-stationary
Markov policy) as compared with the state-distribution ν should be sub-
exponential. In general, this holds for “noisy” systems, but, as argued by
Munos and Szepesvári (2006) it holds for certain deterministic systems, as
well.

The paper is organized as follows: In the next section (Section 2) we
introduce the basic concepts, definitions and symbols needed in the rest of
the paper. The algorithm along with its motivation is given in Section 3.
This is followed by some additional definitions necessary for the presentation
of the main result, which is done at the beginning of Section 4. The rest of
this section is divided into three parts, each devoted to one major step of the
proof. In particular, in Section 4.1 a finite-sample bound is given on the error
of the particular policy evaluation procedure proposed here. The bound
makes the dependence on the complexity of the function space, the mixing
rate of the trajectory and the number of samples explicit. In Section 4.2
we prove a bound on how errors propagate throughout the iterations of the
procedure. The proof of the main result is finished in Section 4.3. We discuss
the main result, in the context of previous work in Section 5. Finally, our
conclusions are drawn and possible directions for future work are outlined
in Section 6.
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2 Definitions

As we shall work with continuous spaces we will need some simple measure
theoretic concepts. These are introduced first. Next, Markovian Decision
Problems (MDPs) and various MDP concepts are introduced along with
the symbols, notation, operators, etc. needed throughout the paper.

For a measurable space with domain S we let M(S) denote the set of
all probability measures over S. Fix p ≥ 1. For a measure ν ∈ M(S) and a
measurable function f : S → R we let ‖f‖p,ν denote the Lp(ν)-norm of f :

‖f‖p
p,ν =

∫
|f(s)|pν(ds).

We shall also write ‖f‖ν to denote the L2(ν)-norm of f . We denote the
space of bounded measurable functions with domain X by B(X ), and the
space of measurable functions with bound 0 < K < ∞ by B(X ;K). We
let ‖f‖∞ denote the supremum norm: ‖f‖∞ = supx∈X |f(x)|. The symbol
I{E} shall denote the indicator function: For an event E, I{E} = 1 iff E
holds and I{E} = 0, otherwise. We use 1 to denote the function that takes
on the constant value one everywhere over its domain and use 0 to denote
the likewise function that takes zero everywhere.

A discounted MDP is defined by a quintuple (X ,A, P, S, γ), where X is
the (possibly infinite) state space, A = {a1, a2, . . . , aL} is the set of actions,
P : X × A → M(X ) is the transition probability kernel, P (·|x, a) defining
the next-state distribution upon taking action a from state x, S(·|x, a) gives
the corresponding distribution of immediate rewards, and γ ∈ (0, 1) is the
discount factor.

We make the following assumptions on the MDP:

Assumption 1 (MDP Regularity) X is a compact subspace of the s-
dimensional Euclidean space. We assume that the random immediate re-
wards are bounded by R̂max and the expected immediate rewards r(x, a) =∫

rS(dr|x, a) are bounded by Rmax: ‖r‖∞ ≤ Rmax. (Note that Rmax ≤
R̂max.)

A policy is defined as a (measurable) mapping from past observations to
a distribution over the set of actions (for details, see Bertsekas and Shreve,
1978). A policy is called Markov if the distribution depends only on the
last state of the observation sequence. A policy is called stationary Markov
if this dependency does not change by time. For a stationary Markov pol-
icy, the probability distribution over the actions given some state x will be
denoted by π(·|x). A policy is deterministic if the probability distribution
concentrates on a single action for all histories. Such policies will be iden-
tified by mappings from the states to actions, i.e., functions of the form
π : X → A.

The value of a policy π when it is started from a state x is defined as
the total expected discounted reward that is encountered while the policy
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is executed:

V π(x) = Eπ

[ ∞∑
t=0

γtRt|X0 = x

]
.

Here Rt denotes the reward received at time step t; Rt ∼ S(·|Xt, At) and Xt

is assumed to evolve according to Xt+1 ∼ P (·|Xt, At) where At is sampled
from the distribution assigned to the past observations by π. For a station-
ary Markov policy π, At ∼ π(·|Xt), whilst if π is deterministic stationary
Markov then by our previous remark we write At = π′t(Xt). We introduce
Qπ : X ×A → R, the action-value function of policy π:

Qπ(x, a) = Eπ

[ ∞∑
t=0

γtRt|X0 = x,A0 = a

]
.

The goal is to find a policy that attains the best possible values, V ∗(x) =
supπ V π(x) for all states x ∈ X . Function V ∗ is called the optimal value
function. A policy is called optimal if it attains the optimal values V ∗(x) for
any state x ∈ X , i.e., if V π(x) = V ∗(x) for all x ∈ X . The function Q∗(x, a)
is defined analogously: Q∗(x, a) = supπ Qπ(x, a). It is known that for any
policy π, the functions V π,Qπ are bounded by Rmax/(1− γ), as are Q∗ and
V ∗. We say that a (deterministic stationary) policy π is greedy w.r.t. an
action-value function Q ∈ B(X ×A) and write

π = π̂(·;Q),

if, for all x ∈ X and a ∈ A,

π(x) ∈ argmax
a∈A

Q(x, a).

Since A is finite, such a greedy policy always exists. It is known that under
mild conditions the greedy policy w.r.t. Q∗ is optimal (e.g. Bertsekas and
Shreve, 1978). Hence, in what follows, without the loss of generality we
restrict the search for a good policy to the set of deterministic, stationary
Markov policies and by the word ’policy’ we shall mean such policies.

For a (deterministic stationary Markov) policy π, we define the operator
Tπ : B(X ×A) → B(X ×A) by

(TπQ)(x, a) = r(x, a) + γ

∫
Q(y, π(y))P (dy|x, a).

It is easy to see that Tπ is a contraction operator w.r.t. the supremum-norm
and the action-value value-function of π is the unique fixed point of Tπ:

TπQπ = Qπ. (1)

We define the projection operator Eπ : B(X ×A) → B(X ) by

(EπQ)(x) = Q(x, π(x)), Q ∈ B(X ×A).
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We define two operators corresponding to the transition probability kernel
P as follows: A right-linear operator, P · : B(X ) → B(X ×A), is defined by

(PV )(x, a) =
∫

V (y)P (dy|x, a),

whilst a left-linear operator, ·P : M(X ×A) → M(X ), is defined by

(ρP )(dy) =
∫

P (dy|x, a)ρ(dx, da).

This operator is also extended to act on measures over X via

(ρP )(dy) =
1
L

∑
a∈A

∫
P (dy|x, a)ρ(dx).

By composing P and Eπ, we define Pπ:

Pπ = PEπ.

Note that this equation defines two operators: a right- and a left-linear one.
Throughout the paper F ⊂ {f : X → R} will denote some subset of

real-valued functions over the state-space X . For convenience, we will treat
elements of FL as real-valued functions f defined over X × A with the
obvious identification f ≡ (f1, . . . , fL), f(x, aj) = fj(x), j = 1, . . . , L. The
set FL will define the set of admissible functions used in the optimization
step of our algorithm.

Finally, for ν ∈ M(X ), we extend ‖·‖p,ν (p ≥ 1) to FL by

‖f‖p
p,ν =

1
L

L∑
j=1

‖fj‖p
p,ν .

Alternatively, we define ν(dx, da), the extension of ν to X ×A via∫
Q(x, a)ν(dx, da) =

1
L

L∑
j=1

∫
Q(x, aj)ν(dx). (2)

For real numbers a and b, a ∨ b shall denote the maximum of a and b.
Similarly, a ∧ b shall denote the minimum of a and b.

3 Algorithm

The algorithm studied in this paper is an instance of the generic fitted policy
iteration method, whose pseudo-code is shown in Figure 1. By assumption,
the training sample, D, used by the algorithm consists of a finite trajectory

{(Xt, At, Rt)}1≤t≤N
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FittedPolicyQ(D,K,Q−1,PEval)
// D: samples (e.g. trajectory)
// K: number of iterations
// Q−1: Initial action-value function
// PEval: Policy evaluation routine
Q← Q−1 // Initialization
for k = 0 to K − 1 do

Q′ ← Q
Q←PEval(π̂(·; Q′), D)

end for
return Q // or π̂(·; Q), the greedy policy w.r.t. Q

Fig. 1 Model-free Fitted Policy Iteration

of some stochastic stationary policy π: At ∼ π(·|Xt), Xt+1 ∼ P (·|Xt, At),
Rt ∼ S(·|Xt, At). We assume that this trajectory is sufficiently representa-
tive in a sense that will be made precise in the next section. For now, let us
make the assumption that Xt is stationary and is distributed according to
some (unknown) distribution ν. The action-evaluation function Q−1 is used
to initialize the first policy (alternatively, one may start with an arbitrary
initial policy at the price of making the algorithm somewhat more compli-
cated). Procedure PEval takes data in the form of a long trajectory and
some policy. In this case the policy is just the greedy policy with respect to
Q′, π̂ = π̂(·;Q′). Based on π̂, PEval should return an approximation to the
action-value function Qπ̂.

There are many possibilities to design PEval. In this paper we consider
an approach based on Bellman-residual minimization (BRM). The basic
idea of BRM comes from rewriting the fixed point equation (1) for Qπ̂ in
the form Qπ̂ − T π̂Qπ̂ = 0. The left-hand-side of this equation is called the
Bellman-residual of Qπ̂. For Q 6= Qπ̂, the Bellman-residual of Q is nonzero:
Q− T π̂Q 6= 0. Hence it is expected that a smaller risk,

∥∥Q− T π̂Q
∥∥, yields

better estimates. Here ‖·‖ could be any norm. From our point of view, the
L2-norm is attractive as it leads to well-studied optimization problems and
makes the connection to regression-estimation easier. Hence, let us consider
the loss function

L(Q; π̂) =
∥∥Q− T π̂Q

∥∥2

ν
,

where ν, the stationary distribution underlying the states in the input
data is selected to facilitate a sample-based approximation (remember that
‖Q‖2ν = 1/L

∑L
j=1 ‖Q(·, aj)‖2ν).
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We chase Q = argminf∈FL L(f ; π̂).1 At a first sight it may seem that

L̂N (f ; π̂) =
1

NL

N∑
t=1

L∑
j=1

I{At=aj}

π(aj |Xt)
(f(Xt, aj)− (Rt + γf(Xt+1, π̂(Xt+1))))

2

(3)
is an appropriate sample-based approximation to L(f ; π̂). Indeed, for any
given Xt, At and f , Rt + γf(Xt+1, π̂(Xt+1) is an unbiased estimate of
(T π̂f)(Xt, At). However, as it is well known (see Sutton and Barto, 1987,
pp. 200, Munos, 2003 or Lagoudakis and Parr, 2003 for discussions), L̂N

is not a “proper” approximation to the corresponding L2 Bellman-error:
E
[
L̂N (f ; π̂)

]
6= L(f ; π̂). Indeed, elementary calculus shows that for Y ∼

P (·|x, a), R ∼ S(·|x, a),

E
[(

f(x, a)− (R + γf(Y, π̂(Y )))
)2
]

= (f(x, a)− (T π̂f)(x, a))2 + Var [R + γf(Y, π̂(Y ))] .

It follows that minimizing L̂N (f ; π̂) in the limit when N → ∞ is equiv-
alent to minimizing the sum of γ2E [Var [f(Y, π̂(Y ))] |X] and L(f ; π̂). The
unwanted variance term acts like a penalty factor, favoring smooth solu-
tions (if f is constant then Var [f(Y, π̂(Y ))|X] = 0). Although smoothness
penalties are often used as a means of complexity regularization, in order
to arrive at a consistent procedure one needs a way to control the influence
of the penalty. Here we do not have such a control and hence the procedure
will yield biased estimates even as the number of samples grows without a
limit. Hence, we need to look for alternative ways to approximate the loss
L.

A common suggestion is to use uncorrelated, or “double” samples with
L̂N as defined by (3). According to this proposal, for each state and action in
the sample at least two next states should be generated (see e.g. Sutton and
Barto, 1987, pp. 200). This is however ruled out by our assumption that we
have a sample generated by a fixed policy. Another possibility, motivated
by the double-sample proposal, would be to reuse samples that are close
in space (e.g., use nearest neighbors). The difficulty with this approach is
that it requires a definition of ‘proximity’. Here, we pursue an alternative
approach that avoids the need to define such a notion. The idea underlying
our proposal is that if we knew T π̂f , we could use it to cancel the variance
term that causes the problems. Hence, we propose to introduce an auxiliary
function h to be used as the approximation to T π̂f . Define

L(f, h; π̂) = L(f ; π̂)−
∥∥h− T π̂f

∥∥2

ν
. (4)

1 In order to simplify the presentation we assume sufficient regularity of F so
that we do not need to worry about the existence of a minimizer which can be
guaranteed under fairly mild conditions, such as the compactness of F w.r.t. ‖·‖ν ,
or if F is finite dimensional (Cheney, 1966).
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We propose to solve for

f̂ = argmin
f∈FL

sup
h∈FL

L(f, h; π̂). (5)

where the supremum in h comes from the negative sign of the term that
involves h (we want to make

∥∥h− T π̂f
∥∥2

ν
small, or −

∥∥h− T π̂f
∥∥2

ν
large).

Notice that L(f, h; π̂) can be used to upper-bound L(f ; π̂) as follows:
Let h∗f ∈ FL be a function that minimizes

∥∥h− T π̂f
∥∥2

ν
. Then

L(f ; π̂) = L(f, h∗f ; π̂) +
∥∥h∗f − T π̂f

∥∥2

ν
.

Hence, if infh∈FL

∥∥h− T π̂f
∥∥2

ν
is uniformly small (say, smaller than ε > 0)

then we can guarantee that the solution of (5) will admit a small Bellman-
residual, since

L(f ; π̂) ≤ L(f, h∗f ; π̂) + ε.

We now argue that the sample-based approximation of L(f, h; π̂), defined
by

L̂N (f, h; π̂) =
1

NL

N∑
t=1

L∑
j=1

I{At=aj}

π(aj |Xt)

(
(f(Xt, aj)− (Rt + γf(Xt+1, π̂(Xt+1))))2

−(h(Xt, aj)− (Rt + γf(Xt+1, π̂(Xt+1))))2
)

(6)

is unbiased, hence this loss-function overcomes the problem of the origi-
nal Bellman-residual loss function. This key result of the paper is stated
formally in the following lemma:

Lemma 1 (Unbiased Loss Approximation) Assume that the behaviour
policy π samples all actions in all states with positive probability. Then for
any f ,h ∈ FL, policy π̂, L̂N (f, h; π̂) as defined by (6) provides an unbiased
estimate to L(f, h; π̂):

E
[
L̂N (f, h; π̂)

]
= L(f, h; π̂). (7)

Proof Let us define Ctj =
I{At=aj}

π(aj |Xt)
and Q̂f,t = Rt + γf(Xt+1, π̂(Xt+1)).

Then, by (6), the tth term of L̂N (f, h; π̂) can be written as

L(t) =
1
L

L∑
j=1

Ctj

(
(fj(Xt)− Q̂f,t)2 − (hj(Xt)− Q̂f,t)2

)
. (8)

Note that

E
[
CtjQ̂f,t|Xt

]
= E

[
Q̂f,t|Xt, At = aj

]
(9)

= r(Xt, aj) + γ

∫
y

f(y, π̂(y)) dP (y|Xt, aj) = (T π̂f)j(Xt)
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and E [Ctj |Xt] = 1 since all actions are sampled with positive probability in
any state. Taking expectations,

E
[
L(1)

]
= E

[
E
[
L(1) |X1

]]
=

1
L

L∑
j=1

E
[
E
[
C1j

(
(fj(X1)− Q̂f,1)2 − (hj(X1)− Q̂f,1)2

)
|X1

]]
.

Now, by using the elementary identity (a−x)2−(b−x)2 = (a−b)(a+b−2x)
twice we get

E
[
C1j

(
(fj(X1)− Q̂f,1)2 − (hj(X1)− Q̂f,1)2

)
|X1

]
= E

[
C1j (fj(X1)− hj(X1)) (fj(X1) + hj(X1)− 2Q̂f,1) |X1

]
= (fj(X1)− hj(X1))

(
fj(X1) + hj(X1)− 2E

[
C1jQ̂f,1|X1

])
(since fj(X1), hj(X1) are X1 −measurable and E [C1j |X1] = 1)

= (fj(X1)− hj(X1)) (fj(X1) + hj(X1)− 2(T π̂f)j(X1)) (by (9))

=
(
fj(X1)− (T π̂f)j(X1)

)2 − (hj(X1)− (T π̂f)j(X1)
)2

.

Taking expectations of both sides we get that

E
[
L(1)

]
=

1
L

L∑
j=1

(∥∥fj − (T π̂f)j

∥∥2

ν
−
∥∥hj − (T π̂f)j

∥∥2

ν

)
= L(f ;Q′)−

∥∥h− T π̂f
∥∥2

ν

= L(f, h;Q′).

Because of stationarity this holds for E
[
L(t)

]
for any t, thus finishing the

proof of (7). ut

It can be observed that the key step here is that the quadratic terms
Q̂2

f,t and (T π̂f)2j are cancelled in the new loss functions (both in the sample
based and the population based versions).

Hence we let PEval solve for

Q = argmin
f∈FL

sup
h∈FL

L̂N (f, h; π̂). (10)

Note that for linearly parameterized function classes the solution of the
optimization problem (10) can be obtained in a closed form. In general,
one may expect that the number of parameters doubles as a result of the
introduction of the auxiliary function. Although this may represent a consid-
erable additional computational burden on the algorithm, given the possible
merits of the Bellman-residual minimization approach over the least-squares
fixed point approach (cf. the discussion by Munos, 2003), we think that the
extra effort may well pay off.
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A slight optimization over (6) is to modify the term that includes h by
removing Rt. This helps one to reduce the variance of the samples that h is
regressed onto and hence we suspect that it helps increasing the efficiency of
the procedure. The main statements of the paper remain essentially intact,
with the constants appearing in the bound improving slightly. However, for
the sake of keeping the paper compact we do not pursue this direction here.

4 Main Result

Before describing the main result we need some additional definitions.
We start with a mixing-property of stochastic processes. Informally, a

process is mixing if future depends weakly on the past. The particular mix-
ing concept we use here is called β-mixing:

Definition 1 (β-mixing) Let {Zt}t=1,2,... be a stochastic process. Denote
by Z1:n the collection (Z1, . . . , Zn), where we allow n = ∞. Let σ(Zi:j)
denote the sigma-algebra generated by Zi:j (i ≤ j). The m-th β-mixing
coefficient of {Zt}, βm, is defined by

βm = sup
t≥1

E

[
sup

B∈σ(Zt+m:∞)

|P (B|Z1:t)− P (B)|

]
.

A stochastic process is said to be β-mixing if βm → 0 as m → ∞. In
particular, we say that a β-mixing process mixes at an exponential rate
with parameters β, b, κ > 0 if βm ≤ β exp(−bmκ) holds for all m ≥ 0.

Note that besides β-mixing, many other definitions of mixing exist in the
literature (see, e.g. Doukhan, 1994). The weakest among those most com-
monly used is called α-mixing. Another commonly used one is φ-mixing
which is stronger than β-mixing (see Meyn and Tweedie, 1993).

Let us now state the main assumptions regarding the sample path:

Assumption 2 (Sample Path Properties) Assume that

{(Xt, At, Rt)}t=1,...,N

is the sample path of π, a stochastic stationary policy. Further, assume that
{Xt} is strictly stationary (Xt ∼ ν ∈ M(X )) and exponentially β-mixing
with the actual rate given by the parameters (β, b, κ). We further assume
that the sampling policy π satisfies π0

def= mina∈A infx∈X π(a|x) > 0.

The β-mixing property will be used to establish tail inequalities for certain
empirical processes. Note that if Xt is β-mixing then the hidden-Markov
process {(Xt, (At, Rt))} is also β-mixing with the same rate (see, e.g., the
proof of Proposition 4 by Carrasco and Chen (2002) for an argument that
can be used to prove this).

As discussed in the introduction, our bounds will depend on the average
concentrability of the future-state distribution. This quantity that we in-
troduce relates two distributions: ν, the stationary distribution underlying
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{Xt}, and ρ, the distribution used to assess the performance of the proce-
dure (chosen by the user). It turns out that in the technique that we use
to bound the final error as a function of the intermediate errors we need to
change distributions between future state-distributions started from ρ and
ν. An easy way to bound the amplification factor of changing from measure
α to measure β is to use the Radon-Nykodim derivative of α w.r.t. β. De-
noting this derivative (density) by dα/dβ, we have that for any nonnegative
measurable function f ,

∫
f dα =

∫
f dα

dβ dβ ≤ ‖dα
dβ ‖∞

∫
f dβ. This motivates

the following definition introduced in Munos and Szepesvári (2006):

Definition 2 (Discounted-average Concentrability of Future-State
Distribution) Given ρ, ν, m ≥ 0 and an arbitrary sequence of stationary
policies {πm}m≥1, let

cρ,ν(m) = sup
π1,...,πm

∥∥∥∥d(ρPπ1Pπ2 . . . Pπm)
dν

∥∥∥∥
∞

, (11)

with the understanding that if the future state distribution ρPπ1Pπ2 . . . Pπm

is not absolutely continuous w.r.t. ν then we take cρ,ν(m) = ∞. The second-
order discounted-average concentrability of future-state distributions is de-
fined by

Cρ,ν = (1− γ)2
∑
m≥1

mγm−1cρ,ν(m).

In general cρ,ν(m) diverges to infinity as m → ∞. However, thanks to the
discounting, Cρ,ν will still be finite whenever γm converges to zero faster
than cρ,ν(m) converges to ∞. In particular, if the rate of divergence of
cρ,ν(m) is sub-exponential, i.e., if Γ = lim supm→∞ 1/m log cρ,ν(m) ≤ 0
then Cρ,ν will be finite. In the stochastic process literature, Γ is called the
top-Lyapunov exponent of the system and the condition Γ ≤ 0 is inter-
preted as a stability condition. Hence, our condition on the finiteness of the
discounted-average concentrability coefficient Cρ,ν can also be interpreted
as a stability condition. Further discussion of this concept and some exam-
ples of how to estimate Cρ,ν for various system classes can be found in the
report by Munos and Szepesvári (2006).

The concentrability coefficient Cρ,ν will enter our bound on the weighted
error of the algorithm. In addition to these weighted-error bounds, we shall
also derive a bound on the L∞-norm error of the algorithm. This bound re-
quires a stronger controllability assumption. In fact, the bound will depend
on

Cν = sup
x∈X ,a∈A

dP (·|x, a)
dν

,

i.e., the supremum of the density of the transition kernel w.r.t. the state-
distribution ν. Again, if the system is “noisy” then Cν is finite: In fact, the
noisier is the dynamics (the less control we have), the smaller is Cν . As a
side-note, let us remark that Cρ,ν ≤ Cν holds for any measures ρ, ν. This
follows directly from their respective definitions.
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Our bounds also depend on the capacity of the function set F . Let us
now develop the necessary concepts. We assume that the reader is familiar
with the concept of VC-dimension.2 The VC-dimension of a set system C
shall be denoted by VC . To avoid any confusions we introduce the definition
of covering numbers:

Definition 3 (Covering Numbers) Fix ε > 0 and a semi-metric space
M = (M, d). We say that M is covered by m discs D1, . . . , Dm if M ⊂
∪jDj. We define the covering number N (ε,M, d) of M as the smallest
integer m such that M can be covered by m discs each of which having a
radius less than ε. If no such finite m exists then we let N (ε,M, d) = ∞.

In particular, for a class F of real-valued functions with domain X and
points x1:N = (x1, x2, . . . , xN ) in X , we use the empirical covering numbers,
i.e., the covering number of F equipped with the empirical L1 semi-metric

lx1:N (f, g) =
1
N

N∑
t=1

|f(xt)− g(xt)|.

In this case N (ε,F , lx1:N ) shall be denoted by N1(ε,F , x1:N ).
Another widely used capacity measure in the nonparametric statistics

literature that we will need is the pseudo-dimension of function sets:

Definition 4 (Pseudo-dimension) The pseudo-dimension VF+ of F is
defined as the VC-dimension of the subgraphs of functions in F (hence it
is also called the VC-subgraph dimension of F).

In addition to the pseudo-dimension, we will need a new capacity con-
cept:

Definition 5 (VC-crossing Dimension) Let C2 = {{x ∈ X : f1(x) ≥
f2(x)} : f1, f2 ∈ F}. The VC-crossing dimension of F , denoted by VF× , is
defined as the VC-dimension of C2: VF×

def= VC2 .

The rationale of this definition is as follows: Remember that in the kth
iteration of the algorithm we want to compute an approximate (action-
value) evaluation of the policy greedy w.r.t. a previously computed action-
value function Q′. Thus, in such a step we will jointly select L functions
(one for each action of A) from F for a policy π̂ that is greedy w.r.t. Q′

through (6) and (10). It follows that we will ultimately need a covering
number bound for the set

F∨
π̂ = { f : f(·) = Q(·, π̂(·)) and Q ∈ FL }.

2 Readers not familiar with VC-dimension are suggested to consult a book, such
as the one by Anthony and Bartlett (1999).
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Since Q′ depends on the data, the above set is random. In order to deal
with this, we consider the following, non-random superset of F∨

π̂ :

F∨ =
⋃

Q′∈FL

F∨
π̂(·;Q′)

= { f : f(·) = Q(·, π̂(·)), π̂ = π̂(·;Q′) and Q,Q′ ∈ FL }.

Ultimately, we will bound the estimation error of the procedure using the
capacity of this class. Note that F∨ can be written in the equivalent form:

F∨ =


L∑

j=1

I{fj(x)=max1≤k≤L fk(x)}gj(x) : fj , gj ∈ F


(with ties broken in a systematic, but otherwise arbitrary way). If we define
the set of partitions of X induced by elements of F as

ΞF,L =
{

ξ : ξ = {Aj}L
j=1, Aj ⊂ X , x ∈ Aj ⇔ fj(x) = max

1≤k≤L
fk(x), fj ∈ F

}
(12)

then we see that

F∨ =


L∑

j=1

I{Aj} gj : {Ak} = ξ ∈ ΞF,L, gj ∈ F

 . (13)

It turns out that the capacity of this class ultimately depends on the capacity
(i.e., VC-dimension) of the set-system C2 defined above. The form (13)
suggests to view the elements of the set F∨ as regression trees defined by
the partition system ΞF,L and set F . Actually, as the starting point for our
capacity bounds we will use a result from the regression tree literature due
to Nobel (1996).

Having introduced this new capacity measure, the first question is if it
is really different from previous measures. The next lemma, listing basic
properties of VC-crossing dimension answers this question affirmatively.

Lemma 2 (Properties of VC-crossing Dimension) For any class F of
X → R functions the following statements hold:
a) VF+ ≤ VF× . In particular, if VF× < ∞ then VF+ < ∞.
b) If F is a vector space then VF+ = VF× = dim(F). In particular, if F is
a subset of a finite dimensional vector space then VF× < ∞.
c) There exists F with VF× < ∞ which is not a subset of any finite dimen-
sional vector space.
d) There exists F with X = [0, 1], VF+ < ∞ but VF× = ∞. In particular,
there exists F with these properties such that the following properties also
hold for F : (i) F is countable, (ii) {{x ∈ X : f(x) ≥ a} : f ∈ F , a ∈ R}
is a VC-class (i.e., F is VC-major class), (iii) each f ∈ F is monotonous,
bounded, and continuously differentiable with uniformly bounded derivatives.
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The proof of this lemma is given in the Appendix. Now we are ready to
state our assumptions on the function set F :

Assumption 3 (Assumptions on the Function Set) Assume that F ⊂
B(X ;Qmax) for Qmax > 0 and VF× < +∞.

Let us now turn to the definition of the quantities measuring the ap-
proximation power of F . Like in regression, we need F to be sufficiently
powerful in order to be able to approximate the evaluation functions of
the policies encountered during the iterations closely. We shall define the
approximation power of the function space in terms of two measures, its
inherent Bellman-error and its inherent one-step Bellman-error.

The Bellman-error of an action-value function Q w.r.t. a policy eval-
uation operator T π̂ is commonly defined as the supremum norm of the
difference Q− T π̂Q in analogy with the definition where the operators act
on state-value functions. As it is widely known, if the Bellman-error is small
then Q is close to the fixed point of T π̂ thanks to T π̂ being a contraction.
Hence, it is natural to expect that the final error of fitted policy iteration
will be small if for all policies π̂ encountered during the run of the algo-
rithm, we can find some admissible action-value function Q ∈ FL such that
Q− T π̂Q is small. For a fixed policy π̂, the quantity

E∞(FL; π̂) = inf
Q∈FL

∥∥Q− T π̂Q
∥∥

ν

can be used to measure the power of F in this respect. Since we do not
know in advance which policies will be encountered during the execution of
the algorithm, taking a pessimistic approach, we bound the final error in
terms of

E∞(FL) def= sup
Q′∈FL

E∞(FL; π̂(·;Q′)),

called the inherent Bellman-error of F . The subindex ‘∞’ is meant to convey
the view that the fixed points of an operator can be obtained by repeating
it an infinite number of times.

Another related quantity is the inherent one-step Bellman-error of F .
For a fixed policy π̂, the one-step Bellman-error of F w.r.t. T π̂ is defined as
the one-sided Hausdorff distance w.r.t. the L2(ν)-norm of the sets FL and
T π̂FL:

E1(FL; π̂) = dν(T π̂FL,FL)

(
= sup

Q∈FL

inf
Q′∈FL

∥∥Q′ − T π̂Q
∥∥

ν

)
.

Taking again a pessimistic approach, the inherent one-step Bellman-error
of F is defined as

E1(FL) = sup
Q′′∈FL

E1(FL; π̂(·;Q′′)).

The rationale of the ‘one-step’ qualifier is that T π̂ is applied only once and
then we look at how well the function in the resulting one-step image-space
can be approximated by elements of FL.
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The final error will actually depend on the squared sum of the inherent
Bellman-error and the inherent one-step Bellman-error of F :

E2(FL) = E2
∞(FL) + E2

1(FL),

E(FL) is called the total inherent Bellman-error of F . It is the additional
term, −

∥∥h− T π̂f
∥∥

ν
that we added in (4) to the unmodified Bellman-

residual that causes the inherent one-step Bellman-error to enter our bounds.
We are now ready to give the main result of the paper:

Theorem 3 (Finite-sample Error Bounds) Let (X ,A, P, S, γ) be a dis-
counted MDP satisfying Assumption 1. In particular, let Rmax denote a
bound on the expected immediate rewards and let R̂max denote a bound on
the random immediate rewards. Fix the set of admissible functions F satis-
fying Assumption 3 with Qmax ≤ Rmax/(1−γ). Consider the fitted policy it-
eration algorithm with the modified Bellman-residual minimization criterion
defined by (10) and the input {(Xt, At, Rt)}, satisfying the mixing assump-
tion, Assumption 2. Let Qk ∈ FL be the kth iterate (k = −1, 0, 1, 2, . . .) and
let πk+1 be greedy w.r.t. Qk. Choose ρ ∈ M(X ), a measure used to evaluate
the performance of the algorithm and let 0 < δ ≤ 1. Then

‖Q∗ −QπK‖ρ ≤

2γ

(1− γ)2

(
C1/2

ρ,ν

E(FL) +

(
ΛN ( δ

K ) (ΛN ( δ
K )/b ∨ 1)1/κ

C2N

)1/4
+ γK/2 Rmax

)
(14)

holds with probability at least 1−δ. Here E(FL) is the total inherent Bellman-
error of F , ΛN (δ) quantifies the dependence of the estimation error on N ,
δ, and the capacity of the function set F :

ΛN (δ) = V
2 (log N + log+ C2) + log+ C1 + log(e/δ) + log+ β,

V being the “effective” dimension of F :

V = 3LVF+ + L2VF× ,

L2 = L(L− 1),

log C1 = V log

(
512eQmaxR̃max

Lπ0

)
+ VF× L2 log L2 + VF+ L log 2 + L2

+L2 log(VF× + 1) + L log(VF+ + 1) + 2 log(LVF+ + 1) + 2 log(4e),

C2 =
1
2

(
Lπ0

32R̃2
max

)2

,

and
R̃max = (1 + γ)Qmax + R̂max.

Further, ‖Q∗ −QπK‖∞ can be bounded with probability at least 1 − δ by a
bound identical to (14), except that C

1/2
ρ,ν has to be replaced by C

1/2
ν .
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Before developing the proof, let us make some comments on the form of
the bound (14). The bound has three terms, the first two of which are similar
to terms that should be familiar from regression-estimation: In particular,
the first term that depends on the total inherent Bellman-error of F , E(FL),
quantifies the approximation power of F as discussed beforehand. The next
term, apart from logarithmic and constant factors and terms and after some
simplifications can be written in the form

(
(V log N + log(K/δ))1+1/κ

N

)1/4

.

This term bounds the estimation error. Note that the rate obtained (as a
function of the number of samples, N) is worse than the best rates available
in the regression literature. However, we think that this is only a proof arti-
fact. Just like in regression, using a different proof technique (cf. Chapter 11
of Györfi et al., 2002), it seems possible to get a bound that scales with the
reciprocal of the square-root of N , though this has the price that E(FL) is
replaced by (1 + α)E(FL) with α > 0. The last term does not have a coun-
terpart in regression settings, as it is a bound on the error remaining after
running the policy iteration algorithm for a finite number (K) of iterations.
It can be readily observed that the optimal value of K will depend amongst
other factors on the capacity of the function set, the mixing rate, and the
number of samples. However, it will not depend on the approximation-power
of the function set.

Finally, let us comment on the multipliers of the bound. The multi-
plier 2γ/(1 − γ)2 appears in previous L∞-performance bounds for policy
iteration, too (cf. Bertsekas and Tsitsiklis, 1996b). As discussed previously,
the concentrability coefficient, C

1/2
ρ,ν , enters the bound due to the change-of-

measure argument that we use when we propagate the error bounds through
the iterations.

Note that a bound on the difference of the optimal action-value function,
Q∗, and the action-value function of πK , QπK , does not immediately yield
a bound on the difference of V ∗ and V πK . However, with some additional
work (by using similar techniques to the ones used below) it is possible to
derive such a bound by starting with the point-wise bound

|V ∗ − V πK | ≤ Eπ∗(Q∗ −QπK−1 + QπK−1 −QK−1)
+EπK (QK−1 −QπK−1 + QπK−1 −Q∗ + Q∗ −QπK ),

which follows by elementary arguments. For the sake of compactness this
bound is not explored here in further details.

The following sections are devoted to develop the proof of the above
theorem.
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4.1 Bounds on the Error of the Fitting Procedure

The goal of this section is to derive a bound on the error introduced due
to using a finite sample in the main optimization routine minimizing the
(modified) sample-based Bellman-residual criterion defined by (6). If the
samples were identically distributed and independent of each other, we could
use the results developed for empirical processes (e.g. Pollard’s inequality)
to arrive at such a bound. However, since the samples are dependent these
tools cannot be used. Instead, we will use the blocking device of Yu (1994).
For simplicity assume that N = 2mNkN for appropriate positive integers
mN , kN (the general case can be taken care of as was done by Yu, 1994).
The technique of Yu partitions the samples into 2mN blocks, each having
kN samples. The samples in every second block are replaced by “ghost”
samples whose joint marginal distribution is kept the same as that of the
original samples (for the same block). However, these new random variables
are constructed such that the new blocks are independent of each other. In
order to keep the the flow of the developments continuous, the proofs of the
statements of these results are given in the Appendix.

We start with the following lemma, which refines a previous result of
Meir (2000):

Lemma 4 Suppose that Z0, . . . , ZN ∈ Z is a stationary β-mixing process
with mixing coefficients {βm}, Z ′

t ∈ Z (t ∈ H) are the block-independent
“ghost” samples as done by Yu (1994), and H = {2ikN + j : 0 ≤ i <
mN , 1 ≤ j ≤ kN}, and that F is a permissible class of Z → [−K, K]
functions. Then

P

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
t=1

f(Zt)− E [f(Z0)]

∣∣∣∣∣ > ε

)

≤ 16E [N1(ε/8,F , (Z ′
t; t ∈ H))] e−

mN ε2

128K2 + 2mNβkN+1.

Note that this lemma is based on the following form of a lemma due to
Yu (1994). This lemma is stated without a proof:3

Lemma 5 (Yu, 1994, 4.2 Lemma) Suppose that Hi = {2kN (i− 1) + j :
1 ≤ j ≤ kN}, {Zt}, {Z ′

t}, and H =
⋃mN

i=1 Hi are as in Lemma 4, and that
F is a permissible class of bounded Z → R functions. Then

P

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
t=1

f(Zt)

∣∣∣∣∣ > ε

)
≤ 2P

(
sup
f∈F

∣∣∣∣∣ 1
N

mN∑
i=1

∑
t∈Hi

f(Z ′
t)

∣∣∣∣∣ > ε

2

)
+2mNβkN+1.

Let us now develop the tools used to bound the capacity of the function
set of interest. For this, let Ξ be a family of partitions of X . By a partition

3 Note that both Yu (1994) and Meir (2000) give a bound that contains βkN

instead of βkN +1 which we have here. Actually, a careful investigation of the
original proof of Yu (1994) leads to the bound that is presented here.
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of X we mean an ordered list of disjoint subsets of X whose union covers X .
Note that the empty set may enter multiple times the list. Following Nobel
(1996), we define the cell count of a partition family Ξ by

m(Ξ) = max
ξ∈Ξ

|{A ∈ ξ : A 6= ∅}|.

We will work with partition families that have finite cell counts. Note that
we may always achieve that all partitions have the same number of cells by
introducing the necessary number of empty sets. Hence, in what follows we
will always assume that all partitions have the same number of elements. For
x1:N ∈ XN , let ∆(x1:N , Ξ) be the number of distinct partitions (regardless
the order) of x1:N that are induced by the elements of Ξ. The partitioning
number of Ξ, ∆∗

N (Ξ), is defined as max{∆(x1:N , Ξ) : x1:N ∈ XN}. Note
that the partitioning number is a generalization of shatter-coefficient.

Given a class G of real-valued functions on X and a partition family Ξ
over X , define the set of Ξ-patched functions of G as follows:

G ◦Ξ =

f =
∑
Aj∈ξ

gjI{Aj} : ξ = {Aj} ∈ Ξ, gj ∈ G

 .

Note that from this, (12) and (13), we have F∨ = F ◦ΞF,L. We quote here
a result of Nobel (with any domain X instead of Rs and with minimized
premise):

Proposition 6 (Nobel, 1996, Proposition 1) Let Ξ be any partition fam-
ily with m(Ξ) < ∞, G be a class of real-valued functions on X , x1:N ∈ XN .
Let φN : R+ → R+ be a function that upper-bounds the empirical covering
numbers of G on all subsets of the multi-set [x1, . . . , xN ] at all scales:

N1(ε,G, A) ≤ φN (ε), A ⊂ [x1, . . . , xN ], ε > 0.

Then, for any ε > 0,

N1(ε,G ◦Ξ, x1:N ) ≤ ∆(x1:N , Ξ)φN (ε)m(Ξ) ≤ ∆∗
N (Ξ)φN (ε)m(Ξ). (15)

In our next result we refine this bound by replacing the partitioning
number by the covering number of the partition family:

Lemma 7 Let Ξ, G, x1:N , φN : R+ → R+ be as in Proposition 6. More-
over, let G be bounded: ∀g ∈ G, |g| ≤ K. For ξ = {Aj}, ξ′ = {A′

j} ∈ Ξ,
introduce the semi-metric

d(ξ, ξ′) = dx1:N (ξ, ξ′) = µN (ξ 4 ξ′),

where

ξ 4 ξ′ = {x ∈ X : ∃j 6= j′;x ∈ Aj ∩A′
j′} =

m(Ξ)⋃
j=1

Aj 4A′
j ,
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and where µN is the empirical measure corresponding to x1:N defined by
µN (A) = 1

N

∑N
i=1 I{xi∈A} (here A is any measurable subset of X ). Then,

for any ε > 0, α ∈ (0, 1),

N1(ε,G ◦Ξ, x1:N ) ≤ N
( αε

2K
,Ξ, dx1:N

)
φN ((1− α)ε)m(Ξ).

Note that from this latter bound, provided that φN is left-continuous, the
conclusion of Proposition 6 follows in the following limiting sense: Since
N (ε, Ξ, dx1:N ) ≤ ∆(x1:N , Ξ) holds for any ε > 0, we have

N1(ε,G ◦Ξ, x1:N ) ≤ ∆(x1:N , Ξ)φN ((1− α)ε)m(Ξ).

Thus, letting α → 0 yields the bound (15).
Lemma 7 is used by the following result that develops a capacity bound

on the function set of interest:

Lemma 8 Let F be a class of uniformly bounded functions on X (∀f ∈ F ,
|f | ≤ K), x1:N ∈ XN , φN : R+ → R+ be an upper-bound on the empirical
covering numbers of F on all subsets of the multi-set [x1, . . . , xN ] at all
scales as in Proposition 6. Let G1

2 denote the class of indicator functions
I{f1(x)≥f2(x)} : X → {0, 1} for any f1, f2 ∈ F . Then for F∨ defined in (13),
for every ε > 0, α ∈ (0, 1),

N (ε,F∨, x1:N ) ≤ N1

(
αε

L(L− 1)K
,G1

2 , x1:N

)L(L−1)

φN ((1− α)ε)L.

We shall use the following lemma due to Haussler (1995) (see also, An-
thony and Bartlett, 1999, Theorem 18.4) to bound the empirical covering
numbers of our function sets in terms of their pseudo-dimensions:

Proposition 9 (Haussler, 1995, Corollary 3) For any set X , any points
x1:N ∈ XN , any class F of functions on X taking values in [0,K] with
pseudo-dimension VF+ < ∞, and any ε > 0,

N1(ε,F , x1:N ) ≤ e(VF+ + 1)
(

2eK

ε

)VF+

.

Define

Ẽ2
1(FL; π̂) = E2

1(FL; π̂)− inf
f,h∈FL

∥∥h− T π̂f
∥∥2

ν
.

Certainly, Ẽ2
1(FL; π̂) ≤ E2

1(FL; π̂). The following lemma is the main result
of this section:

Lemma 10 Let Assumption 1 and 2 hold, and fix the set of admissible
functions F satisfying Assumption 3. Let Q′ be a real-valued random func-
tion over X × A, Q′(ω) ∈ FL (possibly not independent from the sample
path). Let π̂ = π̂(·;Q′) be a policy that is greedy w.r.t. Q′. Let f ′ be defined
by

f ′ = argmin
f∈FL

sup
h∈FL

L̂N (f, h; π̂).
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For 0 < δ ≤ 1, N ≥ 1, with probability at least 1− δ,

∥∥f ′ − T π̂f ′
∥∥2

ν
≤ E2

∞(FL; π̂) + Ẽ2
1(FL; π̂) +

√
ΛN (δ)(ΛN (δ)/b ∨ 1)1/κ

C2N
,

where ΛN (δ) and C2 are defined as in Theorem 3. Further, the bound re-
mains true if E2

∞(FL; π̂) + Ẽ2
1(FL; π̂) above is replaced by E2(FL).

By considering the case when γ = 0 and L = 1 we get an interesting
side-result for regression function estimation (we use r = r(x) since there
are no actions):

Corollary 11 Let Assumption 1 hold. Assume that {(Xt, Rt)}t=1,...,N is
the sample path, {Xt} is strictly stationary (Xt ∼ ν ∈ M(X )) and β-mixing
with exponential rate (β, b, κ). Assume that F ⊂ B(X ;Qmax) for Qmax ≥ 0
and VF+ < ∞. Let f ′ be defined by

f ′ = argmin
f∈F

1
N

N∑
t=1

(f(Xt)−Rt)2.

Then, for 0 < δ ≤ 1, N ≥ 1, with probability at least 1− δ,

‖f ′ − r‖2ν ≤ inf
f∈F

‖f − r‖2ν +

√
ΛN (δ)(ΛN (δ)/b ∨ 1)1/κ

C2N
,

where ΛN (δ) = (VF+/2 ∨ 1) log N +(VF+/2) log+ C2 +log+ C1 +log(e/δ)+

log+ β, C1 = 16e(VF+ + 1)(128eQmaxR̃max)VF+ , C2 =
(

1
32R̃2

max

)2

, R̃max =

Qmax + R̂max.

4.2 Propagation of Errors

The main result of the previous section shows that if the approximation
power of F is good enough and the number of samples is high then for any
policy π the optimization procedure will return a function Q with small
weighted error. Now, let Q0, Q1, Q2, . . . denote the iterates returned by our
algorithm, with Q−1 being the initial action-value function:

Qk = argmin
Q∈FL

sup
h∈FL

L̂N (Q,h;πk), k = 0, 1, 2, . . . ,

πk = π̂(·;Qk−1), k = 0, 1, 2, . . . .

Further, let
εk = Qk − TπkQk, k = 0, 1, 2, . . . (16)

denote the Bellman-residual of the kth step. By the main result of the
previous section, in any iteration step k the optimization procedure will find
with high probability a function Qk such that ‖εk‖2ν is small. The purpose
of this section is to bound the final error as a function of the intermediate
errors. This is done in the following lemma without actually making any
assumptions about how the sequence Qk is generated:
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Lemma 12 Let p ≥ 1, and let K be a positive integer, Qmax ≤ Rmax/(1−
γ). Then, for any sequence of functions {Qk} ⊂ B(X ;Qmax), 0 ≤ k < K
and εk defined by (16) the following inequalities hold:

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

(
C1/p

ρ,ν max
0≤k<K

‖εk‖p,ν + γK/p Rmax

)
, (17)

‖Q∗ −QπK‖∞ ≤ 2γ

(1− γ)2

(
C1/p

ν max
0≤k<K

‖εk‖p,ν + γK/p Rmax

)
. (18)

Proof We have Cν ≥ Cρ,ν for any ρ. Thus, if the bound (17) holds for
any ρ, choosing ρ to be a Dirac at each state implies that (18) also holds.
Therefore, we only need to prove (17).

Let
Ek = Pπk+1(I − γPπk+1)−1 − Pπ∗(I − γPπk)−1.

Closely following the proof of Lemma 4 in (Munos, 2003) we get

Q∗ −Qπk+1 ≤ γPπ∗(Q∗ −Qπk) + γEkεk.

Thus, by induction,

Q∗ −QπK ≤ γ
K−1∑
k=0

(γPπ∗)K−k−1Ekεk + (γPπ∗)K (Q∗ −Qπ0). (19)

Now, let

Fk = Pπk+1(I − γPπk+1)−1 + Pπ∗(I − γPπk)−1.

By taking the absolute value point-wise in (19) we get

Q∗ −QπK ≤ γ
K−1∑
k=0

(γPπ∗)K−k−1Fk|εk|+ (γPπ∗)K |Q∗ −Qπ0 |.

From this, using the fact that Q∗ −Qπ0 ≤ 2
1−γ Rmax1, we arrive at

|Q∗ −QπK | ≤ 2γ(1− γK+1)
(1− γ)2

[
K−1∑
k=0

αkAk|εk|+ αKAKRmax1

]
. (20)

Here we introduced the positive coefficients

αk =
(1− γ)γK−k−1

1− γK+1
, for 0 ≤ k < K, and αK =

(1− γ)γK

1− γK+1
,

and the operators

Ak =
1− γ

2
(Pπ∗)K−k−1Fk, for 0 ≤ k < K, and AK = (Pπ∗)K .

Note that
∑K

k=0 αk = 1 and the operators Ak are stochastic when considered
as a right-linear operators. It is clear that Ak are non-negative: AkQ ≥ 0
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whenever Q ≥ 0. It is also clear that Ak are linear operators. It remains to
see that they are stochastic, i.e., that (Ak1)(x, a) = 1 holds for all (x, a) ∈
X × A. From the definition of Ak it is easy to see that it suffices to check
that (1− γ)/2Fk is stochastic. For this, it suffices to notice that (1− γ)(I −
γPπk+1)−1 and (1 − γ)(I − γPπk)−1 are stochastic. This follows, however,
by e.g. the Neumann-series expansion of these inverse operators. It is known
that Jensen’s inequality holds for stochastic operators: If A is a stochastic
operator and g is a convex function then g(AkQ) ≤ Ak(g ◦ Q), where g is
applied point-wise, as is done the comparison between the two sides.

Let λK =
[

2γ(1−γK+1)
(1−γ)2

]p
. Taking the pth power of both sides of (20),

using Jensen’s inequality twice and then integrating both sides w.r.t. ρ(x, a)
(with using ρ’s extension to X ×A defined by (2)) we get

‖Q∗ −QπK‖p
p,ρ =

1
L

∑
a∈A

∫
ρ(dx) |Q∗(x, a)−QπK (x, a)|p

≤ λK ρ

[
K−1∑
k=0

αkAk|εk|p + αKAK(Rmax)p1

]
.

From the definition of the coefficients cρ,ν(m),

ρAk ≤ (1− γ)
∑
m≥0

γmcρ,ν(m + K − k)ν

and hence

‖Q∗ −QπK‖p
p,ρ

≤ λK

(1− γ)
K−1∑
k=0

αk

∑
m≥0

γmcρ,ν(m + K − k) ‖εk‖p
p,ν + αK (Rmax)p

 .

Let ε
def= max0≤k<K ‖εk‖p,ν . Using the definition of αk, Cρ,ν and λK we

get

‖Q∗ −QπK‖p
p,ρ ≤ λK

[
1

1− γK+1
Cρ,ν εp +

(1− γ)γK

1− γK+1
(Rmax)p

]
≤ λK

[
Cρ,ν εp + γK (Rmax)p

]
≤
[

2γ
(1−γ)2

]p [
Cρ,ν εp + γK (Rmax)p

]
,

leading to the desired bound:

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2
C1/p

ρ,ν ε + γK/p Rmax.ut
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4.3 Proof of the Main Result

Now we are ready to prove Theorem 3.

Proof As in the case of the previous proof, we only need to prove the state-
ment for the weighted ρ-norm.

Fix N,K > 0, and let ρ and F be as in the statement of Theorem 3.
Consider the iterates Qk generated by model-free policy iteration with PEval
defined by (10), when running on the trajectory {(Xt, At, Rt)} generated
by some stochastic stationary policy π. Let ν be the invariant measure
underlying the stationary process {Xt}. Let πK be a policy greedy w.r.t.
QK . Our aim is to derive a bound on the distance of QπK and Q∗. For
this, we use Lemma 12. Indeed, if one defines εk = Qk − TπkQk then by
Lemma 12 with p = 2,

‖Q∗ −QπK‖ρ ≤
2γ

(1− γ)2

(
C1/2

ρ,ν max
0≤k<K

‖εk‖ν + γK/2 Rmax

)
. (21)

Now, from Lemma 10, we conclude that for any fixed integer 0 ≤ k < K
and for any δ′ > 0,

‖εk‖ν ≤ E(FL) +
(

ΛN (δ′) (ΛN (δ′)/b ∨ 1)1/κ

C2N

)1/4

(22)

holds everywhere except on a set of probability at most δ′. (ΛN (δ′) and
C2 are defined as in the theorem.) Take δ′ = δ/K. By the choice of δ′,
the total probability of the set of exceptional events for 0 ≤ k < K is at
most δ. Outside of this failure set, we have that Equation (22) holds for all
0 ≤ k < K. Combining this with (21), we get

‖Q∗ −QπK‖ρ ≤

2γ

(1− γ)2

(
C1/2

ρ,ν

E(FL) +


ΛN ( δ

K )
(

ΛN (
δ
K )

b ∨ 1
)1/κ

C2N


1/4+ γ

K
2 Rmax

)
,

thus finishing the proof of the weighted-norm bound. ut

5 Related Work

The idea of using value function approximation goes back to the early days
of dynamic programming (Samuel, 1959; Bellman and Dreyfus, 1959). With
the recent growth of interest in reinforcement learning, work on value func-
tion approximation methods flourished (Bertsekas and Tsitsiklis, 1996a;
Sutton and Barto, 1998). Recent theoretical results mostly concern supremum-
norm approximation errors (Gordon, 1995; Tsitsiklis and Van Roy, 1996),
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where the main condition on the way intermediate iterates are mapped (pro-
jected) to the function space is that the corresponding operator, Π, must
be a non-expansion. Practical examples when Π satisfies the said property
include certain kernel-based methods, see e.g. the works by Gordon (1995);
Tsitsiklis and Van Roy (1996); Guestrin et al. (2001); Ernst et al. (2005).
However, the restriction imposed on Π rules out many popular algorithms,
such as regression-based approaches that were found, however, to behave
well in practice (e.g. Wang and Dietterich, 1999; Dietterich and Wang, 2002;
Lagoudakis and Parr, 2003). The need for analyzing the behaviour of such
algorithms provided the basic motivation for this work.

To the best of our knowledge there are no previous theoretical results on
the finite-sample performance of off-policy control-learning algorithms for
infinite horizon problems that use function-approximation and learn from
a single trajectory. In fact, the only paper where finite-sample bounds are
derived in an off-policy setting and which uses function approximators is the
paper by Murphy (2005) who considered fitted Q-iteration in finite-horizon,
undiscounted problems. A major relief that comes from the finite-horizon
assumption is that the training data consists of multiple independent tra-
jectories. As a result the samples for any fixed stage are independent of each
other. Proceeding backwards via a stage-wise analysis it is then possible to
eliminate the complications resulting from working with dependent samples
completely.

Another interesting theoretical development concerning off-policy con-
trol learning with value-function approximation is the paper by Ormoneit
and Sen (2002) who considered kernel-regression in conjunction with Q-
learning and obtained asymptotic rates on weak-convergence. Q-learning
with interpolative function approximation was considered by Szepesvári and
Smart (2004), where only asymptotic convergence and performance bounds
were given. Both these works carry out the analysis with respect to the
L∞ norm and exploit that the function-approximation operator Π is a non-
expansion. Precup et al. (2001) considers the use of likelihood ratios to
evaluate policies and arrive at asymptotic convergence results, though only
for policy evaluation.

As to the methods, the closest to the present work is the paper of
Szepesvári and Munos (2005). However, unlike there here we dealt with
a fitted policy iteration algorithm and worked with dependent samples and
a single sample-path. All these resulted in a much complex analysis and the
need to develop new tools: For dealing with dependant data, we used the
blocking device originally proposed by Yu (1994). We had to introduce a
new capacity concept to deal with the complications arising from the use
of policy iteration. The error propagation technique used in Section 4.2 is
an extension of a similar technique due to Munos (2003). However, whilst
the analysis in Munos (2003) was restricted to the case when the transition
probability kernel is point-wise absolute continuous w.r.t. the stationary
distribution of the states (i.e., under the assumption Cν < +∞), here the
analysis was carried out under a weaker condition (namely, Cρ,ν < ∞). Al-
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though this condition was studied earlier by Szepesvári and Munos (2005),
but only for analyzing approximate value iteration.

6 Conclusions and Future Work

We have considered fitted policy iteration with Bellman-residual minimiza-
tion. To our best knowledge this is the first theoretical paper where high-
probability finite-sample bounds are derived on the performance of a rein-
forcement learning algorithm for infinite-horizon control learning in an off-
policy setting, using function approximators over a continuous state-space.
In order to derive our results we had to introduce a novel sample-based
approximation to the Bellman-residual criterion, a capacity concept, deal
with dependent samples and work out a method to propagate weighted
norm errors in a policy iteration setting. Our main result quantifies the de-
pendency of the final error on the number of samples, the mixing rate of the
process, the average-discounted concentrability of the future-state distrib-
ution, the number of iterations, the capacity and the approximation power
of the function set used in the embedded least-squares problem.

Although we believe that the present work represents a significant step
towards understanding what makes efficient reinforcement learning possible,
it appears that much remains to be done.

Although we made some initial steps towards finding out the properties
of VC-crossing dimensions, bounds on the VC-crossing dimension of pop-
ular function classes, such as regression trees or neural networks are yet to
be seen. The present work also leaves open the question of how to design
appropriate function sets that have controlled capacity but large approxi-
mation power. When the MDP is noisy and the dynamics is “smooth” then
it is known that the class of value functions of all stationary policies will be
uniformly smooth. Hence, for such MDPs, at least in theory, as the sample
size growth to infinity by choosing a sequence of increasing function sets
whose union covers the space of smooth functions (like in the method of
sieves in regression) it is possible to recover the optimal policy with the
presented method. One open question is how to design a method that adap-
tively chooses the function set so as to fit the actual smoothness of the
system. One idea, borrowed from the regression literature, is to use penal-
ized least-squares. It remains to be seen if this method is indeed capable to
achieve adaptation to unknown smoothness.

Another possibility is to use different function sets for the representation
of the fixed point candidates and the auxiliary function candidates, or in the
successive iterations of the algorithm. How to choose these function sets?
Also, at many points in the analysis we took a pessimistic approach (e.g.
in the derandomization of F∨

π̂ or when bounding the approximation error).
It might be possible to improve our bounds by a great extent by avoiding
these pessimistic steps.

One major challenge is to extend our results to continuous action spaces
as the present analysis heavily builds on the finiteness of the action set.
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It would also be desirable to remove the condition that the function set
must admit a bounded envelope. One idea is to use the truncation tech-
nique of Chapter 11 by (Györfi et al., 2002) for this purpose. The technique
presented there could also be used to try to improve the rate of our current
estimate. Borrowing further ideas from the regression literature, it might
be possible to achieve even greater improvement by, e.g., using localization
techniques or data-dependent bounds.

Although in this paper we considered Bellman-residual minimization,
the techniques developed could be applied to least-squares fixed point ap-
proximation based approaches such as the LSPI algorithm of Lagoudakis
and Parr (2003), or least-squares fitted Q-iteration considered recently by
Ernst et al. (2005). Another direction is to relax the condition that the
states are observable. Indeed, this assumption can be lifted easily since the
algorithm never works directly with the states. The assumption that the tra-
jectory is sufficient representative certainly fails when the behaviour policy
does not sample all actions with positive probability in all states. Still, the
result can be extended to this case, but the statement has to be modified ap-
propriately since it is clear that in this case convergence to near-optimality
cannot be guaranteed.

Finally, it would be interesting to compare the result that we obtained
with γ = 0 and L = 1 for the regression-case (Corollary 11) with similar
results available in the regression literature. In connection to this, let us
remark that our method applies and can be used to derive bounds to the
solution of inverse problems of the form Pf = r, f =? with P being a
stochastic operator and when the data consists of samples from r and P .

Appendix

6.1 Proofs of the Auxiliary Lemmata

Proof of Lemma 2. a) Since VF+ is the VC-dimension of the subgraphs
of functions in F , there exist VF+ points, z1,. . . ,zVF+ in X × R that are
shattered by these subgraphs (see, e.g., Devroye et al., 1996 or Anthony
and Bartlett, 1999). This can happen only if the projections, x1,. . . ,xVF+ ,
of these points to X ×{0} are all distinct. Now, for any A ⊆ {x1,. . . ,xVF+ },
there is an f1 ∈ F such that f1(xi) > zi for xi ∈ A and f1(xi) ≤ zi for
xi 6∈ A, and also there is an f2 ∈ F such that f2(xi) ≤ zi for xi ∈ A
and f2(xi) > zi for xi 6∈ A. That is, f1(xi) > f2(xi) for xi ∈ A and
f1(xi) < f2(xi) for xi 6∈ A. Thus, the set in C2 corresponding to (f1, f2)
contains exactly the same xi’s as A does. This means that x1,. . . ,xVF+ is
shattered by C2, that is, VF× = VC2 ≥ VF+ . The second part of the statement
is obvious.

b) According to Theorem 11.4 of Anthony and Bartlett (1999), VF+ =
dim(F). On the other hand, since now for f1,f2 ∈ F also f1 − f2 ∈ F ,
it is easy to see that C2 = {{x ∈ X : f(x) ≥ 0} : f ∈ F}. By taking
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g ≡ 0 in Theorem 3.5 of Anthony and Bartlett (1999), we get the desired
VF× = VC2 = dim(F). The second statement follows obviously.

c) Let F = {I{(a,∞)} : a ∈ R}. Then VF× = 2 and F generates an
infinite dimensional vector space.

d) Let X = [0, 1]. Let {aj} be monotonously decreasing with
∑∞

j=1 aj =
1, 0 ≤ aj ≤ 1/ log2 j, and 3aj+1 > aj . For an integer n ≥ 2, let k ≥ 1 and
0 ≤ i ≤ 2k − 1 be the unique integers defined by n = 2k + i. Define

fn(x) = x +
n∑

j=1

aj and

f̃n(x) = x +
n∑

j=1

aj +
an

4
(−1)bi/2bkxcc sin2(kπx).

Certainly, fn and f̃n are both differentiable. Note that an ≤ a2k ≤ 1/k,
thus the gradient of the last term of f̃n(x) is bounded in absolute value
by kπ/(4k) < 1. Hence the functions f̃n (and obviously fn) are strictly
monotonously increasing, and have range in [0, 2]. Let F1 = {fn : n ≥ 2},
F̃1 = {f̃n : n ≥ 2}, and F = F1 ∪ F̃1. F is certainly countable. By the
monotonicity of fn and f̃n, the VC-dimension of {{x ∈ X : f(x) ≥ a} :
f ∈ F , a ∈ R} is 1. Observe that the sequence fn is point-wise monoto-
nously increasing also in n, and this remains true also for f̃n, since the last
modifying term is negligible (less than an/4 in absolute value). (Moreover,
for any n,n′, n > n′, fn > f̃n′ and f̃n > fn′ everywhere.) This point-wise
monotonicity implies that VF+

1
= VF̃+

1
= 1, and thus VF+ ≤ 3. On the other

hand, since {x ∈ X : f̃n(x) ≥ fn(x)} = {x ∈ X : (−1)bi/2bkxcc ≥ 0} = {x ∈
X : bi/2bkxcc is even}, C2 ⊇ {{x ∈ X : f̃n(x) ≥ fn(x)} : n ≥ 2} = {{x ∈ X :
bi/2bkxcc is even} : n ≥ 2}, and this class contains the unions of {1} and
any of the intervals {[0, 1/k), [1/k, 2/k), . . . [1 − 1/k, 1)} for any k. Thus it
shatters the points {0, 1/k, 2/k, . . . 1− 1/k}, hence VF× = VC2 = ∞. ut

Proof of Lemma 4. Define the block-wise functions f̄ : ZkN → R as

f̄(z1:kN ) = f̄(z1, . . . , zkN
) def=

kN∑
t=1

f(zt)

for f ∈ F and z1:kN = (z1, . . . , zkN
) and let F̄ def= {f̄ : f ∈ F}.
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We use Lemma 5 of Yu to replace the original process by the block-
independent one, implying

P

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
t=1

f(Zt)− E [f(Z0)]

∣∣∣∣∣ > ε

)

= P

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
t=1

(f(Zt)− E [f(Z0)])

∣∣∣∣∣ > ε

)

≤ 2P

(
sup
f∈F

∣∣∣∣∣ 1
N

mN∑
i=1

(f̄(Z ′(i))− kNE [f(Z0)])

∣∣∣∣∣ > ε

2

)
+ 2mNβkN+1

= 2P

(
sup
f∈F

∣∣∣∣∣ 1
mN

mN∑
i=1

f̄(Z ′(i))− kNE [f(Z0)]

∣∣∣∣∣ > kNε

)
+ 2mNβkN+1.(23)

Here Z ′(i) def= {Z ′
t}t∈Hi

= (Z ′
2kN (i−1)+1, . . . , Z

′
2kN (i−1)+kN

).
Now, since any f̄ ∈ F̄ is bounded by kNK, Pollard’s inequality (cf.

Pollard, 1984) applied to the independent blocks implies the bound

P

(
sup
f∈F

∣∣∣∣∣ 1
mN

mN∑
i=1

f̄(Z ′(i))− kNE [f(Z0)]

∣∣∣∣∣ > kNε

)

≤ 8E
[
N1(kNε/8, F̄ , (Z ′(1), . . . , Z ′(mN )))

]
e−

mN ε2

128K2 .

(24)

Following Lemma 5.1 by Meir (2000) (or the proof of part (i) of 4.3 Lemma
of Yu (1994)), we get that for any f ,f̃ ∈ F , the distance of f̄ and ¯̃

f can be
bounded as follows:

1
mN

mN∑
i=1

|f̄(Z ′(i))− ¯̃
f(Z ′(i))| = 1

mN

mN∑
i=1

∣∣∣∣∣∑
t∈Hi

f(Z ′
t)−

∑
t∈Hi

f̃(Z ′
t)

∣∣∣∣∣
≤ 1

mN

mN∑
i=1

∑
t∈Hi

|f(Z ′
t)− f̃(Z ′

t)|

=
kN

N/2

∑
t∈H

|f(Z ′
t)− f̃(Z ′

t)|,

implying4

N1(kNε/8, F̄ , (Z ′(1), . . . , Z ′(mN ))) ≤ N1(ε/8,F , (Z ′
t; t ∈ H)).

This, together with (23) and (24) gives the desired bound. ut
4 Note that neither Meir (2000), nor Yu (1994) exploit that it is enough to use

half of the ghost samples in the upper bound above. Also Meir (2000) makes a
slight mistake of considering (Z′

t; t ∈ H) below as having N (instead of N/2)
variables.
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Proof of Lemma 7. Fix x1, . . . , xN ∈ X and ε > 0. Let Ξ̂ be an αε/(2K)-
cover for Ξ according to d such that |Ξ̂| = N

(
αε
2K , Ξ, d

)
. If f ∈ G ◦Ξ, then

there is a partition ξ = {Aj} ∈ Ξ and functions gj ∈ G such that

f =
∑
Aj∈ξ

gjI{Aj}. (25)

Let ξ′ ∈ Ξ̂ such that d(ξ, ξ′) < αε
2K , and let f ′ =

∑
A′j∈ξ′ gjI{A′j}. Then

1
N

N∑
i=1

|f(xi)− f ′(xi)|

=
1
N

N∑
i=1

∣∣∣∣∣∣
∑
Aj∈ξ

gj(xi)I{xi∈Aj} −
∑

A′j∈ξ′

gj(xi)I{xi∈A′j}

∣∣∣∣∣∣
=

1
N

∑
i:xi∈ξ4ξ′

∣∣∣∣∣∣
∑
Aj∈ξ

gj(xi)I{xi∈Aj} −
∑

A′j∈ξ′

gj(xi)I{xi∈A′j}

∣∣∣∣∣∣
≤ 2K

N
|{i : xi ∈ ξ 4 ξ′}| = 2Kd(ξ, ξ′)

< αε.

Let Fj be an (1 − α)ε-cover for G on Âj = {x1, . . . , xN} ∩ A′
j such that

|Fj | ≤ φN ((1−α)ε). To each function gj appearing in (25) there corresponds
an approximating function fj ∈ Fj such that

1
Nj

∑
xi∈ bAj

|gj(xi)− fj(xi)| < (1− α)ε,

where Nj = |Âj |. If we define f ′′ =
∑

A′j∈ξ′ fjI{A′j}, then it is easy to see
that

1
N

N∑
i=1

|f ′(xi)− f ′′(xi)| < (1− α)ε.

Hence
1
N

N∑
i=1

|f(xi)− f ′′(xi)| < ε.

When the functions fj ∈ Fj are suitably chosen, every function f̃ ∈ G ◦ Ξ
defined in terms of a partition closer to ξ′ than ε in d-metric can be approx-
imated by a similar estimate f ′′. Thus the collection of all such functions
f̃ can be covered on x1:N by no more than

∏|ξ′|
j=1 |Fj | ≤ φN ((1 − α)ε)|ξ

′|

approximating functions. As ξ′ is chosen from N
(

αε
2K , Ξ, d

)
partitions, the

result follows. ut
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Proof of Lemma 8. Since F∨ = F ◦Ξ for Ξ = ΞF,L defined in (12),

N1(ε,F∨, x1:N ) = N1(ε,F ◦Ξ, x1:N ).

We apply Lemma 7 to bound this by

N
( αε

2K
,Ξ, dx1:N

)
φN ((1− α)ε)L,

where N (ε, Ξ, dx1:N ) is the ε-covering number of Ξ regarding the metric
dx1:N defined in Lemma 7.

For f : X ×A → R (f ∈ FL), define the indicator function If : X ×A →
{0, 1}

If (x, a) = I{maxa′∈A f(x,a′)=f(x,a)}

(ties should be broken in an arbitrary systematic way) and their class G =
{If : f ∈ FL}.

Now the distance dx1:N of two partitions in Ξ is L/2-times the L1-
distance of the corresponding two indicator functions in G regarding to the
empirical measure supported on the NL points x1:N ×A. Hence the metric
dx1:N on Ξ corresponds to this L1-metric on G. So

N (ε, Ξ, dx1:N ) = N1

(
2ε

L
,G, x1:N ×A

)
.

Furthermore, if G1
L denotes the class of indicator functions

I{maxa′∈A f(x,a′)=f1(x)} : X → {0, 1} for any f : X × A → R (f ∈ FL),
then, since the support of a function from G is the disjoint union of the
supports (on different instances of X ) of L functions from G1

L, it is easy to
see that (cf., e.g., Devroye et al. Devroye et al. (1996, Theorem 29.6))

N1(ε,G, x1:N ×A) ≤ N1(ε,G1
L, x1:N )L.

Now, since a function from G1
L is the product of L − 1 indicator functions

from G1
2 , it is easy to see that (cf., e.g., the generalization of Devroye et al.,

1996, Theorem 29.7, Pollard, 1990)

N1(ε,G1
L, x1:N ) ≤ N1

(
ε

L− 1
,G1

2 , x1:N

)L−1

.

The equations above together give the bound of the lemma. ut
We shall need the following technical lemma in the next proof:

Lemma 13 Let βm ≤ β exp(−bmκ), N ≥ 1, kN = d(C2Nε2/b)
1

1+κ e, mN =
N/(2kN ), 0 < δ ≤ 1, V ≥ 2, and C1, C2, β, b, κ > 0. Further define ε and
Λ by

ε =

√
Λ(Λ/b ∨ 1)1/κ

C2N
(26)

with Λ = (V/2)(log N + log+ C2) + log+ C1 + log(e/δ) + log+ β. Then

C1

(
1
ε

)V

e−4C2mN ε2
+ 2mNβkN

< δ.
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Proof of Lemma 13. We have

max((C2Nε2/b)
1

1+κ , 1) ≤ kN ≤ max(2(C2Nε2/b)
1

1+κ , 1)

and so

N

4
min

(
b

C2Nε2
, 1
) 1

1+κ

≤ N

4
min

((
b

C2Nε2

) 1
1+κ

, 2

)
≤ mN =

N

2kN
≤ N

2
.

Obviously, Λ ≥ 1 and from (26),

ε ≥
√

Λ/(C2N) ≥
√

1/(C2N) and C2Nε2 = Λ(Λ/b ∨ 1)1/κ. (27)

Substituting the proper bounds for βm, kN , and mN , we get

C1

(
1
ε

)V

e−4C2mN ε2
+ 2mNβkN

≤ C1

(
1
ε

)V

e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

+ Nβe−b(
C2Nε2

b ∨1)
κ

1+κ

= C1

(
1
ε

)V

e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

+ Nβe
−b(

C2Nε2

b ∨1)( b
C2Nε2 ∧1)

1
1+κ

≤

(
C1

(
1
ε

)V

+ Nβ

)
e
−( b

C2Nε2 ∧1)
1

1+κ C2Nε2

,

which, by (27), is upper bounded by

(
C1(C2N)V/2 + Nβ

)
e
−( b

Λ (Λ/b∨1)1/κ
∧1)

1
1+κ Λ(Λ/b∨1)1/κ

.

It is easy to check that the exponent of e in the last factor is just −Λ. Thus,
substituting Λ, this factor is N−V/2e−(V/2) log+ C2δ/(e(β ∨ 1)(C1 ∨ 1)), and
our bound becomes

(
(C2N)V/2 + N

)
N−V/2e−(V/2) log+ C2

δ

e

≤
((

elog C2−log+ C2

)V/2

+ e−(V/2) log+ C2

)
δ

e

≤ (1 + 1)
δ

e
< δ.ut
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6.2 Proof of Lemma 10

Proof Recall that (see the proof of Lemma 1) Q̂f,t = Rt+γf(Xt+1, π̂(Xt+1)),
and that, for fixed, deterministic f and π̂,

E
[
Q̂f,t|Xt, At

]
= (T π̂f)(Xt, At),

that is, T π̂f is the regression function of Q̂f,t given (Xt, At). What we have
to show is that the chosen f ′ is close to the corresponding T π̂(·;Q′)f ′ with
high probability, noting that Q′ may not be independent from the sample
path.

We can assume that |F| ≥ 2 (otherwise the bound is obvious). This
implies VF+ , VF× ≥ 1, and thus V ≥ L(L + 2) ≥ 3. Let ε and ΛN (δ) be
chosen as in (26):

ε =

√
ΛN (δ)(ΛN (δ)/b ∨ 1)1/κ

C2N

with ΛN (δ) = (V/2)(log N + log+ C2) + log+ C1 + log(e/δ) + log+ β ≥ 1.
Define

P0
def= P

(∥∥∥f ′ − T π̂(·;Q′)f ′
∥∥∥2

ν
− E2

∞(FL; π̂)− Ẽ2
1(FL; π̂) > ε

)
.

It follows that it is sufficient to prove that P0 < δ.
Remember that for π̂ arbitrary, we defined the following losses:

L(f ; π̂) =
∥∥f − T π̂f

∥∥2

ν
,

L(f, h; π̂) = L(f ; π̂)−
∥∥h− T π̂f

∥∥2

ν
.

Let us now introduce the following additional shorthand notations:

L(f ;Q′) = L(f ; π̂(·;Q′)),
L(f, h;Q′) = L(f, h; π̂(·;Q′)),

L̂N (f, h;Q′) = L̂N (f, h; π̂(·;Q′))

where L̂N was defined in (3). Further, define

L̄(f ;Q′) def= sup
h∈FL

L(f, h;Q′) = L(f ;Q′)− inf
h∈FL

∥∥h− T π̂f
∥∥2

ν
,
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Now,∥∥∥f ′ − T π̂(·;Q′)f ′
∥∥∥2

ν
− E2

∞(FL; π̂)− Ẽ2
1(FL; π̂)

= L(f ′;Q′)− inf
f∈FL

L(f ;Q′)− Ẽ2
1(FL; π̂)

= L̄(f ′;Q′) + inf
h∈FL

∥∥h− T π̂f ′
∥∥2

ν

− inf
f∈FL

(
L̄(f ;Q′) + inf

h∈FL

∥∥h− T π̂f
∥∥2

ν

)
− Ẽ2

1(FL; π̂)

≤ L̄(f ′;Q′) + inf
h∈FL

∥∥h− T π̂f ′
∥∥2

ν

− inf
f∈FL

L̄(f ;Q′)− inf
f,h∈FL

∥∥h− T π̂f
∥∥2

ν
− Ẽ2

1(FL; π̂)

= L̄(f ′;Q′)− L̄F,Q′ + inf
h∈FL

∥∥h− T π̂f ′
∥∥2

ν
− sup

f∈FL

inf
h∈FL

∥∥h− T π̂f
∥∥2

ν

≤ L̄(f ′;Q′)− L̄F,Q′ ,

where L̄F,Q′ = inff∈FL L̄(f ;Q′) is the error of the function with minimum
loss in our class. Define also

¯̂
LN (f ;Q′) def= sup

h∈FL

L̂N (f, h;Q′).

Now, since f ′ = argminf∈FL
¯̂
LN (f ;Q′),

L̄(f ′;Q′) − L̄F,Q′

= L̄(f ′;Q′)− ¯̂
LN (f ′;Q′) + ¯̂

LN (f ′;Q′)− inf
f∈FL

L̄(f ;Q′)

≤ | ¯̂LN (f ′;Q′)− L̄(f ′;Q′)|+ inf
f∈FL

¯̂
LN (f ;Q′)− inf

f∈FL
L̄(f ;Q′)

(by the definition of f ′)

≤ 2 sup
f∈FL

| ¯̂LN (f ;Q′)− L̄(f ;Q′)|

= 2 sup
f∈FL

| sup
h∈FL

L̂N (f, h;Q′)− sup
h∈FL

L(f, h;Q′)|

≤ 2 sup
f,h∈FL

|L̂N (f, h;Q′)− L(f, h;Q′)|

≤ 2 sup
Q′,f,h∈FL

|L̂N (f, h;Q′)− L(f, h;Q′)|.

Thus we get

P0 ≤ P

(
sup

Q′,f,h∈FL

|L̂N (f, h;Q′)− L(f, h;Q′)| > ε/2

)
.

Hence, in the subsequent statements, Q′ denotes an arbitrary (deterministic)
function in FL.
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We follow the line of proof due to Meir (2000). For any f ,h,Q′ ∈ FL, de-
fine the loss function lf,h,Q′ : X ×A×[−R̂max, R̂max]×X → R in accordance
with (6) as

lf,h,Q′(z) = lf,h,Q′(x, a, r, y)

def=
1
L

L∑
j=1

I{a=aj}

π(aj |x)

(
|fj(x)− r − γf(y, π̂(y;Q′))|2

− |hj(x)− r − γf(y, π̂(y;Q′))|2
)

for z = (x, a, r, y) and LF
def= {lf,h,Q′ : f, h, Q′ ∈ FL}. Introduce Zt =

(Xt, At, Rt, Xt+1) for t = 1,. . . ,N . Note that the process {Zt} is β-mixing
with mixing coefficients {βm−1}.

Observe that by (8)

lf,h,Q′(Zt) =
1
L

L∑
j=1

I{At=aj}

π(aj |Xt)
((fj(Xt)− Q̂f,t)2 − (hj(Xt)− Q̂f,t)2) = L(t),

hence we have for any f ,h,Q′ ∈ FL

1
N

N∑
t=1

lf,h,Q′(Zt) = L̂N (f, h;Q′),

and
E [lf,h,Q′(Zt)] = E

[
L(t)

]
= L(f, h;Q′)

(coincidently with (7), but note that E
[ ¯̂
LN (f ;Q′)

]
6= L̄(f ;Q′)). This re-

duces the bound to a uniform tail probability of an empirical process over
LF :

P0 ≤ P

(
sup

Q′,f,h∈FL

∣∣∣∣∣ 1
N

N∑
t=1

lf,h,Q′(Zt)− E [lf,h,Q′(Z1)]

∣∣∣∣∣ > ε/2

)
.

Since the samples are correlated, Pollard’s tail inequality cannot be used
directly. Hence we use the method of Yu (1994), as suggested beforehand.
For this we split the N samples into 2mN blocks that come in pairs (for
simplicity we assume that splitting can be done exactly), i.e., N = 2mNkN .
Introduce the following blocks, each having the same length, kN :

Z1, . . . , ZkN︸ ︷︷ ︸
H1

, ZkN+1, . . . , Z2kN︸ ︷︷ ︸
T1

, Z2kN+1, . . . , Z3kN︸ ︷︷ ︸
H2

, Z3kN+1, . . . , Z4kN︸ ︷︷ ︸
T2

, . . .

. . . , Z(2mN−2)kN+1, . . . , Z(2mN−1)kN︸ ︷︷ ︸
HmN

, Z(2mN−1)kN+1, . . . , Z2mN kN︸ ︷︷ ︸
TmN

.
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Here Hi
def= {2kN (i− 1) + 1, . . . , 2kN (i− 1) + kN} and Ti

def= {2ikN − (kN −
1), . . . , 2ikN}. Next, we introduce the block-independent “ghost” samples
as it was done by Yu (1994) and Meir (2000):

Z ′
1, . . . , Z

′
kN︸ ︷︷ ︸

H1

, Z ′
2kN+1, . . . , Z

′
3kN︸ ︷︷ ︸

H2

, . . . Z ′
(2mN−2)kN+1, . . . , Z

′
(2mN−1)kN︸ ︷︷ ︸

HmN

,

where any particular block has the same marginal distribution as originally,
but the mN blocks are independent of one another. Introduce H =

⋃mN

i=1 Hi.
For this ansatz we use Lemma 4 above with Z = X ×A×R×X , F = LF

noting that any lf,h,Q′ ∈ LF is bounded by

K =
R̃2

max

Lπ0

with R̃max = (1 + γ)Qmax + R̂max, to get the bound

P

(
sup

Q′,f,h∈FL

∣∣∣∣∣ 1
N

N∑
t=1

lf,h,Q′(Zt)− E [lf,h,Q′(Z1)]

∣∣∣∣∣ > ε/2

)

≤ 16E [N1(ε/16,LF , (Z ′
t; t ∈ H))] e

−mN
2

�
Lπ0ε

16R̃2
max

�2

+ 2mNβkN
.

By some calculation, the distance in LF can be bounded as follows:

2
N

∑
t∈H

|lf,h,Q′(Z ′
t)− lg,h̃,Q̃′(Z ′

t)|

≤ 2R̃max

Lπ0

(
2
N

∑
t∈H

|f(X ′
t, A

′
t)− g(X ′

t, A
′
t)|+

2
N

∑
t∈H

|h̃(X ′
t, A

′
t)− h(X ′

t, A
′
t)|

+ 2
2
N

∑
t∈H

|f(X ′
t+1, π̂(X ′

t+1;Q
′))− g(X ′

t+1, π̂(X ′
t+1; Q̃

′))|

)
.

Note that the first and second terms are D′ = ((X ′
t, A

′
t); t ∈ H)-based L1-

distances of functions in FL, while the last term is just twice the D′+ =
(X ′

t+1; t ∈ H)-based L1-distance of two functions in F∨ corresponding to
(f,Q′) and (g, Q̃′). This leads to

N1

(
8R̃max

Lπ0
ε′,LF , (Z ′

t; t ∈ H)

)
≤ N 2

1 (ε′,FL,D′)N1(ε′,F∨,D′+).

Applying now Lemma 8 with α = 1/2,5 the covering number of F∨ is
bounded by

N1

(
ε′

2L2Qmax
,G1

2 ,D′+
)L2

φN/2(ε′/2)L,

5 The optimal choice α = VF×/(VF× + VF+/(L− 1)) would give slightly better
constants.
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where L2 = L(L − 1), G1
2 is the class of the indicator functions of the sets

from C2, and the empirical covering numbers of F on all subsets of D′+ are
majorized by φN/2(·).

To bound these factors, we use Corollary 3 from Haussler (1995) that
was cited here as Proposition 9. The pseudo-dimensions of F and G1

2 are
VF+ , VF× < ∞, respectively, and the range of functions from F has length
2Qmax. By the pigeonhole principle, it is easy to see that that the pseudo-
dimension of FL cannot exceed LVF+ . Thus

N1

(
8R̃max

Lπ0
ε′,LF , (Z ′

t; t ∈ H)

)
≤

(
e(LVF+ + 1)

(
4eQmax

ε′

)LVF+
)2

·

(
e(VF× + 1)

(
4eL2Qmax

ε′

)VF×
)L2

(
e(VF+ + 1)

(
8eQmax

ε′

)VF+
)L

= eL2+2(LVF+ + 1)2(VF+ + 1)L(VF× + 1)L22LVF+ L
L2VF×
2

(
4eQmax

ε′

)V

,

where V = 3LVF+ + L2VF× is the “effective” dimension, and thus

N1(ε/16,LF , (Z ′
t; t ∈ H)) ≤ eL2+2(LVF+ + 1)2(VF+ + 1)L(VF× + 1)L2 ·

· 2LVF+ L
L2VF×
2

(
512eQmaxR̃max

Lπ0ε

)V

=
C1

16

(
1
ε

)V

,

with C1 = C1(L, VF+ , VF× , Qmax, R̂max, γ, π0). It can be easily checked that
log C1 matches the corresponding expression given in the text of the theo-
rem.

Putting together the above bounds we get

P0 ≤ C1

(
1
ε

)V

e−4C2mN ε2
+ 2mNβkN

, (28)

where C2 = 1
2

(
Lπ0

32R̃2
max

)2

. Defining kN = d(C2Nε2/b)
1

1+κ e and mN =
N/(2kN ), the proof is finished by Lemma 13, which, together with (28),
implies P0 < δ.

The last statement follows obviously from Q′ ∈ FL and the definitions
of E(FL), E∞(FL), E1(FL), and Ẽ1(FL; π̂). ut
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