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Abstract

In the spirit of RL-Classifier reductions [1], we present a method to
reduce a specific class of POMDPs to a time-sensitive family of classifiers.
POMDPs are in general intractable to solve exactly, so this reduction
allows us to solve the full POMDP by using algorithms like Q-learning,
which are known to have polynomial convergence time. A great advantage
of this approach is that we can exploit classifiers to discretize and approx-
imate the otherwise continuous belief state. The family of classifiers we
introduce are so-called anytime classifiers, which guarantee increasing ac-
curacy (decreasing error rate) when given more training data. In real-time
reinforcement learning, speed is important, so it is necessary to determine
the optimal time to stop training the anytime classifier. This is called
the optimal stopping time. We present an algorithm to learn the opti-
mal stopping time for a given anytime classifier and show its connections
to neural mechanisms of sensory decision-making. The type of POMDP
which can be reduced to an anytime classifier has states which correspond
directly to actions augmented by two more actions: continuing and stop-
ping training of the state classifier. The parallels to optimal stopping
problems are clear, and we use an extension of Tsitsiklis & Van Roy’s
work [2] to derive a learning algorithm for stopping time similar to Q
learning. Because all classifiers which are based on calculating the poste-
rior probability using Bayesian models are anytime classifiers (which we
show using the Laplace Method), solving this class of POMDP can also
be viewed as Bayesian Inference with a stopping rule, with the posterior
distribution being parametrized by stopping time.
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