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The sensorimotor system finds near-optimal solutions to control problems too hard to handle
with existing algorithms, and does so in real time. How is this possible? One hypothesis is that
movements are constructed from primitives which somehow simplify control. While the implied
reduction in dimensionality is well documented, the structure and origin of the hypothetical prim-
itives, the rules for combining them and the way in which they simplify control remain unclear.
Even less clear is how to reconcile the powerful ideas of compositionality and optimality.

Here we report a mathematical breakthrough: we show how optimal feedback control laws for
a wide range of tasks can be composed from certain task-independent primitives. These primitives
are eigenfunctions of the stochastic plant dynamics, and can be learned through random exploration
in a model-free way. Key to our results is the discovery of a class of nonlinear control problems
whose optimal solutions satisfy a linear, and thus decomposable, partial differential equation.

Our results apply to stochastic optimal control problems in the general form

plant dynamics: dx (t) = a(x(t))dt + B (x(t)) (u(t) dt + odw (1))
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cumulative cost: h (x (tf)) +/0 3 |lu(t)]|” dt

where h,a, B are arbitrary differentiable functions. Many biomechanical control problems can be
cast in this form. The only unusual assumption here is that the noise and control act in the same
subspace. The optimal controls are easily found given the gradient vy of the optimal value function:

optimal feedback control law: u* (x,t) = —r 1B (x)" vx (x,1) (2)

v (x,t) is the cost expected to accumulate if we start at state x and time ¢ and act optimally until
the final time t¢; v (x,tf) = h (x). It satisfies the Hamilton-Jacobi-Bellman (HJB) equation
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This equation is nonlinear due to the last term. Nonlinearity is a major obstacle along the path
to compositionality. However we have found a way to remove it — via a nonlinear "change of
coordinates" which makes (3) exactly linear. Defining the function

transformed optimal value function: z (x,t) = exp (—r 1o ~%v (x,1)) (4)

we express v and its derivatives in terms of z and its derivatives, substitute in (3), and obtain
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Multiplying both sides by 71022z # 0 and simplifying yields the following equation in terms of z:
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transformed HJB equation: —z; = alz, + % trace (BBTZxx) (6)

This is identical to the HJB equation (3) except that the nonlinear term has vanished. The sim-
plification occurred because our transformation broke down the noise contribution into two terms,
one cancelling the nonlinear term exactly and the other being linear. Thus the noise is crucial.
The HJB equation is the foundation of stochastic optimal control theory, and making it linear
has far-reaching implications not only for biological motor control but for control in general. Such
linearity simplifies the search for solutions in general, and enables compositionality in particular.



Equation (6) can be written as —z; = £ [z] with the help of the linear differential operator
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Let \; and f?(-) be eigenvalues and eigenfunctions of £, meaning that for all x they satisfy
eigenvalue problem: 0= X;f*(x)+ L [f* ()] (x) (8)

The idea is to use these eigenfunctions as primitives (or bases) for decomposing the function z:
basis function decomposition: 2z (x,t) = Y, b; (¢) £ (x) (9)

Differential operators such as £ have infinitely many orthogonal eigenfunctions, which form a
complete basis for the space of piece-wise continuous functions. For example, £ [f] = trace (fxx)
corresponds to Laplace’s equation whose eigenfunctions are the harmonic functions. In practice the
sum in (9) will be finite, resembling a truncated Fourier series.
We have now reduced the optimal control problem (1) to computing the time-varying scalar
coefficients b; (¢). Combining (9, 8, 7, 6) we see that these coefficients can be found analytically:
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once the boundary values b; (t7) are known. For orthonormal f?(-) the boundary values are found
by simply projecting the transformed final cost onto the eigenfunctions:

bi (ty) = /z(x,tf) fi(x)dx :/exp (—r71o?h (x)) f' (x) dx (11)
The optimal control law (2) is then a state-dependent linear combination of gradient vector fields:

bi(t)

bz (x,t)

bi (t) = )\zbl (t) s bi (t) = exp ()\1 (t — tf)) bi (L‘f) (10)

modular control law: u* (x,t) = 2B (x)" 3

fr (%) (12)

The remaining question is how to find eigenfunctions f*(-) satisfying (8), and in particular
how the sensorimotor system might do that through learning. Such learning turns out to be
possible using a model-free algorithm, which only needs access to state sequences sampled from the
uncontrolled stochastic dynamics dx = a (x)dt + 0B (x) dw. The algorithm exploits the fact the
generator of the above stochastic process happens to be £, meaning that
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In other words, £ is the expected directional derivative along uncontrolled state trajectories. This
yields an equivalent but more useful definition of an eigenfunction: a function which at every state
is proportional to its expected rate of change under the uncontrolled dynamics. Now let g (x;w)
be a function approximator (say a neural network with one output unit) with parameters w. To
make g approximate an eigenfunction of £, we need to adjust the parameters w and the eigenvalue
A S0 as to minimize the error function
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where x1,Xs, - -+ is a state trajectory sampled in discrete time with time-step A. Such minimization
can be performed via gradient descent and will converge to one of the eigenpairs of £, modulo local
minima of course. To find several eigenpairs simultaneously we need to train multiple function ap-
proximators (say a neural network with multiple output units) on the same error function, but with
an additional term which forces the outputs to be orthonormal. Methods for enforcing orthonormal
outputs have already been developed in the neural network literature in the context of learning
principal components (Oja’s and Sanger’s rule), and can be adapted to the present problem.




