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Abstract

Online convex programming has recently emerged as a powerful primitive for
designing machine learning algorithms. For example, OCP can be used for learn-
ing a linear classifier, dynamically rebalancing a binary search tree, finding the
shortest path in a graph with unknown edge lengths, solving a structured classi-
fication problem, or finding a good strategy in an extensive-form game. Several
researchers have designed no-regret algorithms for OCP. But, compared to no-
regret algorithms for special cases of OCP such as learning from expert advice,
these algorithms are not very numerous or very flexible. In learning from expert
advice, one tool which has proved particularly valuable is the correspondence be-
tween no-regret algorithms and convex potential functions: by reasoning about
these potential functions, researchers have designed algorithms with a wide vari-
ety of useful guarantees, such as good performance when the data are sparse or
when the target hypothesis is sparse. Until now, there has been no such recipe for
the more general OCP problem, and therefore no ability to tune OCP algorithms
to take advantage of properties of the problem or data. In this paper we attempt to
remedy this deficiency by deriving a new class of no-regret learning algorithms for
OCP, called Lagrangian Hedging algorithms. LH algorithms are based on a gen-
eral class of potential functions, and are a direct generalization of known learning
rules like weighted majority and external-regret matching. In addition to proving
regret bounds, we demonstrate our algorithms learning to play one-card poker.

1 Introduction

In a sequence of trials we must pick hypotheses y1, y2, . . . ∈ Y . After we choose yt, the correct
answer is revealed as a convex expected-loss function !t(yt).1 Just before seeing the tth example,
our total loss is therefore Lt =

∑t−1
i=1 !i(yi). If we had predicted using some fixed hypothesis

y instead, then our loss would have been
∑t−1

i=1 !i(y). Our total regret at time t is the difference
between these two losses:

ρt(y) = Lt −
t−1
∑

i=1

!i(y) ρt = sup
y∈Y

ρt(y)

Positive regret means that we would have preferred y to our actual plays.

We assume that Y is a compact convex subset of Rd that has at least two elements. In classical
no-regret algorithms such as weighted majority, Y is a simplex. The corners of Y represent pure
actions, the interior points of Y represent probability distributions over pure actions, and the number

1Many problems use loss functions of the form !t(yt) = !(yt, y
true

t ), where ! is a fixed function such as
squared error and ytrue

t is a target output. The more general notation allows for problems where there may be
more than one correct prediction.
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of corners n is the same as the number of dimensions d. In a more general OCP, on the other hand,
Y may have many more extreme points than dimensions, n # d. For example, Y could be a convex
set which has exponentially many (in d) extreme points, like {y | Ay = b, y ≥ 0} for some matrix
A and vector b, or it could even be a sphere.

The shape of Y captures the structure in our prediction problem. Each point in Y is a separate
hypothesis, but the losses of different hypotheses are related to each other because they are all
embedded in the common representation space Rd. This relationship gives us the ability to infer
the loss of one hypothesis from the losses of others. If we ran a standard no-regret algorithm such
as weighted majority on a structured Y , we would have to give it hypotheses corresponding to
the extreme points c1 . . . cn of Y , and we would lose the connections among hypotheses (with a
corresponding loss in runtime and learning ability).

Our algorithms below are stated in terms of linear loss functions, !t(y) = ct · y. If !t is nonlinear
but convex, we have two options: first, we can substitute the derivative at the current prediction,
∂!t(yt), for ct, and our regret bounds will still hold. Or, second, we can apply the standard convex
programming trick of adding constraints to make our objective linear (see the supplemental material
for an example). In either case we will assume in the remainder of this paper that the loss functions
are linear, and we will write C for the set of possible gradient vectors ct.

2 Related Work

A large number of researchers have studied online prediction in general and OCP in particular. The
OCP problem dates back to Hannan in 1957 [1], who also gave the first algorithm for OCP that we
are aware of. The name “online convex programming” is due to Zinkevich [2], who gave a clever
gradient-descent algorithm. A similar algorithm and bound was presented somewhat earlier in [3]:
that author’s GGD algorithm, using potential function !0(w) = k‖w‖2

2, is equivalent to Zinkevich’s
“lazy projection” with a fixed learning rate. Another clever algorithm for OCP was presented by
Kalai and Vempala [4].

Compared to the above papers, the most important contribution of the current paper is its generality:
our work is the first to give a large class of general OCP algorithms based on potential functions.
Despite this generality, our core result, Theorem 5 of the supplemental material, takes only half a
dozen short equations to prove.

From the online prediction literature, the closest related work is that of Cesa-Bianchi and Lugosi [5],
which follows in the tradition of an algorithm and proof by Blackwell [6]. Cesa-Bianchi and Lugosi
consider choosing predictions from an essentially-arbitrary decision space and receiving outcomes
from an essentially-arbitrary outcome space. Together a decision and an outcome determine how a
markerRt ∈ Rd will move. Given a potential functionG, they present algorithms which keepG(Rt)
from growing too quickly. This result is similar in flavor to our Theorem 5, and both Theorem 5
and the results of Cesa-Bianchi and Lugosi are based on Blackwell-like conditions. In fact, our
Theorem 5 can be thought of as the first generalization of well-known online learning results such
as Cesa-Bianchi and Lugosi’s to online convex programming; it is the most general result of this
sort that we know of.

The main differences between the Cesa-Bianchi–Lugosi results and ours are the restrictions on their
potential functions. They write their potential function as G(u) = f(Φ(u)); they require Φ to
be additive (that is, Φ(u) =

∑

i φi(ui) for one-dimensional functions φi), nonnegative, and twice
differentiable, and they require f : R+ &→ R+ to be increasing, concave, and twice differentiable.
These restrictions rule out many of the potential functions used here, and in fact they rule out most
online convex programming problems. The most restrictive requirement is additivity; for example,
unless the set Ȳ can be factored as Ȳ1 × Ȳ2 × . . . × ȲN , potentials defined via Equation (7) are
generally not expressible as f(Φ(u)) for additive Φ.

In addition to the general papers above, many no-regret algorithms for specific OCPs have appeared
in the literature. These include predicting as well as the best pruning of a decision tree [7], reor-
ganizing a binary search tree online so that frequently-accessed items are close to the root [4], and
picking paths in a graph with unknown edge costs [8].
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Figure 1: A set Y = {y1 +y2 = 1, y ≥ 0} (thick
dark line) and its safe set S (light shaded region).

s1 ← 0
for t ← 1, 2, . . .

ȳt ← f(st) (*)
if ȳt · u > 0 then

yt ← ȳt/(ȳt · u)
else

yt ← arbitrary element of Y
fi
Observe ct, compute st+1 from (1)

end

Figure 2: The gradient form of the La-
grangian Hedging algorithm.

3 Regret Vectors

Lagrangian Hedging algorithms maintain their state in a regret vector, st, defined by the recursion
st+1 = st + (yt · ct)u − ct (1)

with the base case s1 = 0. Here u is an arbitrary vector which satisfies y · u = 1 for all y ∈ Y .
(If necessary we can append a constant element to each y so that such a u exists.) The regret vector
contains information about our actual losses and the gradients of our loss functions: from st we can
find our regret versus any y as follows. (This property justifies the name “regret vector.”)

y · st =
t−1
∑

i=1

(yi · ci)y · u −
t−1
∑

i=1

y · ci = Lt −
t−1
∑

i=1

y · ci = ρt(y)

We can define a safe set, in which our regret is guaranteed to be nonpositive:
S = {s | (∀y ∈ Y) y · s ≤ 0} (2)

The goal of the Lagrangian Hedging algorithm is to keep its regret vector st near the safe set S. S
is a convex cone: it is closed under positive linear combinations of its elements. And, it is polar [9]
to the cone

Ȳ = {λy | y ∈ Y, λ ≥ 0} (3)

4 The Main Algorithm

We will present the general LH algorithm first, then (in Sec. 5) a specialization which is often easier
to implement. The two forms are called the gradient form and the optimization form. Proofs that are
omitted from this document are presented in the supplemental materials.

The LH algorithm is shown in Fig. 2. At each step it chooses its play based on the current regret
vector st (Eq. (1)) and a closed convex potential function F (s) : Rd &→ R with subgradient f(s) :
Rd &→ Rd. This potential function is what distinguishes one instance of the LH algorithm from
another. F (s) should be small when s is in the safe set, and large when s is far from the safe set.

For example, suppose that Y is the probability simplex in Rd, so that S is the negative orthant in Rd.
(This choice of Y would be appropriate for playing a matrix game or predicting from expert advice.)
For this Y , two possible potential functions are

F1(s) = ln
∑

i

eηsi − ln d F2(s) =
∑

i

[si]
2
+/2

where η > 0 is a learning rate and [s]+ = max(s, 0). The potential F1 leads to the Hedge [10] and
weighted majority [11] algorithms, while the potential F2 results in external-regret matching [12,
Theorem B]. For more examples of useful potential functions, see the supplemental material.

For the LH algorithm to be well-defined (that is, to ensure yt ∈ Y) we require
F (s) ≤ 0 ∀s ∈ S (4)



Theorem 1 The LH algorithm is well-defined: given a closed convex hypothesis set Y and a vector
u with u · y = 1 for all y ∈ Y , define S as in (2) and fix a convex potential function F which
is everywhere finite. If F (s) ≤ 0 for all s ∈ S, then the LH algorithm with potential F picks
hypotheses yt ∈ Y for all t.

We can also define a version of the LH algorithm with an adjustable learning rate: if we use the
potential function F (ηs) instead of F (s), the result is equivalent to updating st with a learning
rate η. The ability to adjust our learning rate will help us obtain regret bounds for some classes of
potential functions.

5 The Optimization Form

Even if we have a convenient representation of our hypothesis space Y , it may not be easy to work
directly with the safe set S. In particular, it may be difficult to define, evaluate, and differentiate a
potential function F which has the necessary properties.

For example, a typical choice for F is “squared Euclidean distance from S.” If S is the negative
orthant (as it would be for standard experts algorithms), then F is easy to work with: we can separate
F into a sum of d simple terms, one for each dimension. On the other hand, if S is the safe set for a
complicated hypothesis space (such as Y = {y ≥ 0 | Ay + b = 0} for some matrix A and vector b),
it is not obvious how to compute S, F (s), or ∂F (s) efficiently: F can have many quadratic pieces
with boundaries at many different orientations, and there is generally no way to break F into the
sum of a small number of simple terms. For the same reason, it may also be difficult to prove that F
has the curvature properties required for the performance analysis of Theorem 3.

To avoid these difficulties, we can work with an alternate form of the Lagrangian Hedging algorithm.
This form, called the optimization form, defines F in terms of a simpler function W which we will
call the hedging function. On each step, it computes F and ∂F by solving an optimization problem
involvingW and the hypothesis set Y . In our example above, where F is squared Euclidean distance
from S, the optimization problem is minimum-Euclidean-distance projection: we split s into two
orthogonal components, one in Ȳ and one in S. This optimization is easy since we have a compact
representation of Ȳ . And, knowing the component of s in S tells us which quadratic piece of F is
active, making it easy to compute F (s) and an element of ∂F (s).

For example, two possible hedging functions are

W1(ȳ) =

{

∑

i ȳi ln ȳi + ln d if ȳ ≥ 0,
∑

i ȳi = 1

∞ otherwise
(5)

W2(ȳ) =
∑

i

ȳ2
i /2 (6)

If Y is the probability simplex in Rd (so that S is the negative orthant in Rd and we can choose
u = [1, 1, . . . , 1]T), thenW1(ȳ/η) andW2(ȳ) correspond to the potential functions F1 and F2 from
Section 4 above. So, these hedging functions result in the weighted majority and external-regret
matching algorithms respectively. In these examples, since F1 and F2 are already simple, W1 and
W2 are not any simpler. For an example where the hedging function is easy to write analytically but
the potential function is much more complicated, see the supplemental materials.

For the optimization form of the LH algorithm to be well-defined,W should be convex, dom W ∩ Ȳ
should be nonempty, W (ȳ) ≥ 0 for all ȳ, and the sets {ȳ | W (ȳ) + s · ȳ ≤ k} should be compact
for all s and k. (The last condition is equivalent to saying that W is closed and increases strictly
faster than linearly in all directions.) Theorem 2 below shows that, under these assumptions, the two
forms of the LH algorithm are equivalent.

We can now describe the optimization problem which allows us to implement the LH algorithm
using W and Y instead of the corresponding potential function F . Define Ȳ as in (3). Then F is
defined to be2

F (s) = sup
ȳ∈Ȳ

(s · ȳ − W (ȳ)) (7)

2This definition is similar to the definition of the convex dualW ∗, but the supremum is over ȳ ∈ Ȳ instead
of over all ȳ. As a result, F and W ∗ can be very different functions. As pointed out in the supplemental



We can compute F (s) by solving (7), but for the LH algorithm we need ∂F instead. As Theorem 2
below shows, there is always a ȳ which achieves the maximum in (7):

ȳ ∈ arg max
ȳ∈Ȳ

(s · ȳ − W (ȳ)) (8)

and any such ȳ is an element of ∂F ; so, we can use Equation (8) with s = st to compute ȳt in line
(∗) of the LH algorithm (Figure 2).

To gain an intuition for Equations (7–8), consider the example of external-regret matching. Since Y
is the unit simplex inRd, Ȳ is the positive orthant inRd. So, withW2(ȳ) = ‖ȳ‖2

2/2, the optimization
problem (8) will be equivalent to

ȳ = arg min
ȳ∈Rd

+

1

2
‖s − ȳ‖2

2

That is, ȳ is the projection of s onto Rd
+ by minimum Euclidean distance. It is not hard to verify that

this projection replaces the negative elements of s with zeros, ȳ = [s]+. Substituting this value for
ȳ back into (7) and using the fact that s · [s]+ = [s]+ · [s]+, the resulting potential function is

F2(s) = s · [s]+ −
∑

i

[si]
2
+/2 =

∑

i

[si]
2
+/2

as claimed above. This potential function is the standard one for analyzing external-regret matching.

Theorem 2 Let W be convex, dom W ∩ Ȳ be nonempty, and W (ȳ) ≥ 0 for all ȳ. Suppose the
sets {ȳ | W (ȳ) + s · ȳ ≤ k} are compact for all s and k. Define F as in (7). Then F is finite and
F (s) ≤ 0 for all s ∈ S. And, the optimization form of the LH algorithm using the hedging function
W is equivalent to the gradient form of the LH algorithm with potential function F .

6 Theoretical Results

Our main theoretical results are regret bounds for the LH algorithm. The bounds depend on the
curvature of our potential F , the size of the hypothesis set Y , and the possible slopes C of our loss
functions. Intuitively, F must be neither too curved nor too flat on the scale of the updates to st from
Equation (1): if F is too curved then ∂F will change too quickly and our hypothesis yt will jump
around a lot, while if F is too flat then we will not react quickly enough to changes in regret.

We will state our results for the gradient form of the LH algorithm. For the optimization form,
essentially the same results hold, but the constants are defined in terms of the hedging function
instead. Therefore, we never need to work with (or even be able to write down) the corresponding
potential function. For more details, see the supplemental materials. One result which is slightly
tricky to carry over is the use of learning rates to achieve no regret when p = 1. The choice of
learning rate and the resulting bound are the same as for the gradient form, but the implementation
is slightly different: to set a learning rate η > 0, we replaceW (ȳ) withW (ȳ/η).

We will need upper and lower bounds on F . We will assume

F (s + ∆) ≤ F (s) + ∆ · f(s) + C‖∆‖2 (9)

for all regret vectors s and increments ∆, and

[F (s) + A]+ ≥ inf
s′∈S

B‖s − s′‖p (10)

for all s. Here ‖ · ‖ is an arbitrary finite norm, and A ≥ 0, B > 0, C > 0, and 1 ≤ p ≤ 2 are
constants. Equation (9), together with the convexity of F , implies that F is differentiable and f is its
gradient; the LH algorithm is applicable if F is not differentiable, but its regret bounds are weaker.

We will bound the size of Y by assuming that

‖y‖◦ ≤ M (11)

material, F can be expressed as the dual of a function related toW : it is F = (IȲ +W )∗, where IȲ is 0 within
Ȳ and∞ outside of Ȳ . We state our results in terms ofW rather than F ∗ becauseW will usually be a simpler
function, and so it will generally be easier to verify properties ofW .



for all y in Y . Here, ‖ · ‖◦ is the dual of the norm used in Equation (9) [9].

The size of our update to st (in Equation (1)) depends on the hypothesis set Y , the cost vector set
C, and the vector u. We have already bounded Y; rather than bounding C and u separately, we will
assume that there is a constant D so that

E(‖st+1 − st‖2 | st) ≤ D (12)

Here the expectation is taken with respect to our choice of hypothesis, so the inequality must hold
for all possible values of ct. (The expectation operator is only necessary if we randomize our choice
of hypothesis, as would happen if Y is the convex hull of some non-convex set. If Y was convex to
begin with, we need not randomize, so we can drop the expectation in (12) and below.)

Our theorem then bounds our regret in terms of the above constants. Since the bounds are sublinear
in t, they show that Lagrangian Hedging is a no-regret algorithm when we choose an appropriate
potential F .

Theorem 3 Suppose the potential function F is convex and satisfies Equations (4), (9) and (10).
Suppose that the problem definition is bounded according to (11) and (12). Then the LH algorithm
(Figure 2) achieves expected regret

E(ρt+1(y)) ≤ M((tCD + A)/B)1/p = O(t1/p)

versus any hypothesis y ∈ Y .

If p = 1 the above bound is O(t). But, suppose that we know ahead of time the number of trials t
we will see. Define G(s) = F (ηs), where

η =
√

A/(tCD)

Then the LH algorithm with potential G achieves regret

E(ρt+1(y)) ≤ (2M/B)
√

tACD = O(
√

t)

for any hypothesis y ∈ Y .

7 Examples

The classical applications of no-regret algorithms are learning from expert advice and learning to
play a repeated matrix game. These two tasks are essentially equivalent, since they both use the
probability simplexY = {y | y ≥ 0,

∑

iyi = 1} for their hypothesis set. This choice ofY simplifies
the required algorithms greatly; with appropriate choices of potential functions, it can be shown that
standard no-regret algorithms such as Freund and Schapire’s Hedge [10], Littlestone and Warmuth’s
weighted majority [11], and Hart and Mas-Colell’s external-regret matching [12, Theorem B] are all
special cases of the LH algorithm.

A large variety of other online prediction problems can also be cast in our framework. These prob-
lems include p-norm perceptrons [5], path planning when costs are chosen by an adversary [8],
planning in a Markov decision process when costs are chosen by an adversary [13], online pruning
of a decision tree [14], and online balancing of a binary search tree [4]. More uses of online convex
programming are given in [2–4]. In each case the bounds for the LH algorithm will be polynomial
in the dimensionality of the appropriate hypothesis set and sublinear in the number of trials.

8 Experiments

To demonstrate that our theoretical bounds translate to good practical performance, we implemented
the LH algorithm with the potential functionW2 from (6) and used it to learn policies for the game
of one-card poker. (The hypothesis space for this learning problem is the set of sequence weight
vectors, which is convex because one-card poker is an extensive-form game [15].)

In one-card poker, two players (called the gambler and the dealer) each ante $1 and receive one
card from a 13-card deck. The gambler bets first, adding either $0 or $1 to the pot. Then the dealer
gets a chance to bet, again either $0 or $1. Finally, if the gambler bet $0 and the dealer bet $1, the
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Figure 3: Performance in self-play (left) and against a fixed opponent (right).

gambler gets a second chance to bring her bet up to $1. If either player bets $0 when the other has
already bet $1, that player folds and loses her ante. If neither player folds, the higher card wins the
pot, resulting in a net gain of either $1 or $2 (equal to the other player’s ante plus the bet of $0 or
$1). In contrast to the usual practice in poker we assume that the payoff vector ct is observable after
each hand; the partially-observable extension is beyond the scope of this paper.

One-card poker is a simple game; nonetheless it has many of the elements of more complicated
games, including incomplete information, chance events, and multiple stages. And, optimal play
requires behaviors like randomization and bluffing. The biggest strategic difference between one-
card poker and larger variants such as draw, stud, or hold-em is the idea of hand potential: while
45679 and 24679 are almost equally strong hands in a showdown (they are both 9-high), holding
45679 early in the game is much more valuable because replacing the 9 with either a 3 or an 8 turns
it into a straight.

Figure 3 shows the results of two typical runs: in both panels the dealer is using our no-regret
algorithm. In the left panel the gambler is also using our no-regret algorithm, while in the right
panel the gambler is playing a fixed policy. The x-axis shows number of hands played; the y-axis
shows the average payoff per hand from the dealer to the gambler. The value of the game, −$0.064,
is indicated with a dotted line. The middle solid curve shows the actual performance of the dealer
(who is trying to minimize the payoff).

The upper curve measures the progress of the dealer’s learning: after every fifth hand we extracted
a strategy yavg

t by taking the average of our algorithm’s predictions so far. We then plotted the
worst-case value of yavg

t . That is, we plotted the payoff for playing yavg
t against an opponent which

knows yavg
t and is optimized to maximize the dealer’s losses. Similarly, the lower curve measures

the progress of the gambler’s learning.

In the right panel, the dealer quickly learns to win against the non-adaptive gambler. The dealer
never plays a minimax strategy, as shown by the fact that the upper curve does not approach the
value of the game. Instead, she plays to take advantage of the gambler’s weaknesses. In the left
panel, the gambler adapts and forces the dealer to play more conservatively; in this case, the limiting
strategies for both players are minimax.

The curves in the left panel of Figure 3 show an interesting effect: the small, damping oscillations
result from the dealer and the gambler “chasing” each other around a minimax strategy. One player
will learn to exploit a weakness in the other, but in doing so will open up a weakness in her own
play; then the second player will adapt to try to take advantage of the first, and the cycle will
repeat. Each weakness will be smaller than the last, so the sequence of strategies will converge to a
minimax equilibrium. This cycling behavior is a common phenomenon when two learning players
play against each other. Many learning algorithms will cycle so strongly that they fail to achieve the
value of the game, but our regret bounds eliminate this possibility.



9 Discussion

We have presented the Lagrangian Hedging algorithms, a family of no-regret algorithms for OCP
based on general potential functions. We have proved regret bounds for LH algorithms and demon-
strated experimentally that these bounds lead to good predictive performance in practice. The regret
bounds for LH algorithms have low-order dependences on d, the number of dimensions in the hy-
pothesis set Y . This low-order dependence means that the LH algorithms can learn well in prediction
problems with complicated hypothesis sets; these problems would otherwise require an impractical
amount of training data and computation time.

Our work builds on previous work in online learning and online convex programming. Our contribu-
tions include a new, deterministic algorithm; a simple, general proof; the ability to build algorithms
from a more general class of potential functions; and a new way of building good potential func-
tions from simpler hedging functions, which allows us to construct potential functions for arbitrary
convex hypothesis sets. Future work includes a no-internal-regret version of the LH algorithm, as
well as a bandit-style version. The former will guarantee convergence to a correlated equilibrium in
nonzero-sum games, while the latter will allow us to work from incomplete observations of the cost
vector (e.g., as might happen in an extensive-form game such as poker).
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