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ABSTRACT

Control theory is a mathematical description of how to act
optimally to gain future rewards. In this paper We discuss
a class of non-linear stochastic control problems that can be
efficiently solved using a path integral. In this control for-
malism, the central concept of cost-to-go or value function
becomes a free energy and methods and concepts from sta-
tistical physics can be readily applied, such as Monte Carlo
sampling or the Laplace approximation. When applied to a
receding horizon problem in a stationary environment, the
solution resembles the one obtained by traditional reinforce-
ment learning with discounted reward. It is shown that this
solution can be computed more efficiently than in the dis-
counted reward framework. As shown in previous work, the
approach is easily generalized to time-dependent tasks and
is therefore of great relevance for modeling real-time inter-
actions between agents.

1. INTRODUCTION

One of the central research topics of autonomous (multi-
agent) systems is to design efficient methods that allow agents
to plan their behaviour. Such planning can be seen as opti-
mizing a sequence of actions to attain some future goal and
is the general topic of control theory [11, 5]. In general, the
stochastic non-linear control problem is intractable to solve
and requires an exponential amount of memory and compu-
tation time. The reason is that the state space needs to be
discretized and thus becomes exponentially large in the num-
ber of dimensions. Computing the expectation values means
that all states need to be visited and requires the summation
of exponentially large sums. The same intractabilities are
encountered in reinforcement learning. The most efficient
RL algorithms that solve the discounted reward problem
(TD(X) [12] and Q learning [13]) require millions of itera-
tions to learn a task.
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There are some stochastic control problems that can be
solved efficiently. When the system dynamics is linear and
the cost is quadratic (LQ control), the solution is given in
terms of a number of coupled ordinary differential (Ricatti)
equations that can be solved efficiently [11]. LQ control is
useful to maintain a system such as for instance a chemical
plant, operated around a desired point in state space and
is therefore widely applied in engineering. However, it is
a linear theory and too restricted to model the complexi-
ties of agent behavior. Another interesting case that can
be solved efficiently is continuous control in the absence of
noise [11]. One can apply the so-called Pontryagin Max-
imum Principle [9], which is a variational principle, that
leads to a coupled system of ordinary differential equations
with boundary conditions at both initial and final time. Al-
though this deterministic control problem is not intractable
in the above sense, solving the differential equation can still
be rather complex in practice.

Recently, we have discovered a class of continuous non-
linear stochastic control problems that can be solved more
efficiently than the general case [7, 8]. These are control
problems with a finite time horizon, where the control acts
linearly and additive on the dynamics and the cost of the
control is quadratic. Otherwise, the path cost and end
cost and the intrinsic dynamics of the system are arbitrary.
These control problems can have both time-dependent and
time-independent solutions. The control problem essentially
reduces to the computation of a path integral, which can be
interpreted as a free energy. Because of its typical statistical
mechanics form, one can consider various ways to approxi-
mate this path integral, such as the Laplace approximation
[8], Monte Carlo sampling [8], mean field approximations or
belief propagation [3].

Also, one can extend this control formalism to multiple
agents that jointly solve a task. In this case the agents need
to coordinate their actions not only through time, but also
among each other. It was recently shown that the problem
can be mapped on a graphical model inference problem and
can be solved using the junction tree algorithm. Exact con-
trol solutions can be computed for instance with hundreds
of agents, depending on the complexity of the cost function
[15].

Non-linear stochastic control problems display features
not shared by deterministic control problems nor by linear
stochastic control. In deterministic control, only one glob-
ally optimal solution exists. In stochastic control, the opti-
mal solution is a weighted mixture of suboptimal solutions.
The weighting depends in a non-trivial way on the features



of the problem, such as the noise and the horizon time and on
the cost of each solution. This multi-modality leads to sur-
prising behavior is stochastic optimal control. For instance,
the phenomenon of obstacle avoidance for autonomous sys-
tems not only needs to make the choice of whether to turn
left or right, but also when such decision should be made.
When the obstacle is still far away, no action is required,
but there is a minimal distance to the obstacle when a deci-
sion should be made. This example was treated in [7] and it
was shown that the decision is implemented by spontaneous
symmetry breaking where one solution (go straight ahead)
breaks in two solutions (turn left or right).

1.1 Exploration

Computing optimal behavior for an agent consists of two
difficult subproblems. One is to compute the optimal behav-
ior for a given environment, assuming that the environment
is known to the agent. The second problem is to learn the
environment. Here, we will mainly focus on the first prob-
lem, which is typically intractable and where the path inte-
gral approach can give efficient approximate solutions. The
second problem is complicated by the fact that not all of
the environment is of interest to the agent: only those parts
that have high reward need to be learned. It is intuitively
clear that a suboptimal control behavior that is computed
by the agent, based on the limited part of the environment
that he has explored, may be helpful to select the more in-
teresting parts of the environment. But clearly, part of the
agents behavior should also be purely explorative with the
hope to find even more rewarding parts of the environment.
This is known as the exploration-exploitation dilemma.

When the environment is known, there is no exploration
issue and the optimal strategy can be computed, although
this will typically require exponential time and/or memory.
When the environment is not known, one should explore ’in
some way’ in order to learn the environment. The optimal
way to explore is in general not part of the control problem.

1.2 Outline

In [15] we introduced path integral control theory [7, 8]
as an attractive alternative for cooperative behaviour be-
tween agents in continuous domains. There, the task was
to coordinate the behaviour such that at a fixed future time
the agents are optimally allocated over a number of goals
or tasks. In this paper we wish to consider path integral
control with a finite receding horizon and compare it to the
discounted reward problem traditionally considered in rein-
forcement learning. We restrict ourselves to the single agent
case and at the end of the paper we will discuss its relevance
for multi-agent systems.

In section 2, we introduce the special class of stochastic
non-linear control problems introduced in [7, 8]. For this
class of problems, the non-linear Hamilton-Jacobi-Bellman
equation can be transformed into a linear equation by a
log transformation of the cost-to-go. The transformation
stems back to the early days of quantum mechanics and
was first used by Schrodinger to relate the Hamilton-Jacobi
formalism to the Schrédinger equation. The log transform
was first used in the context of control theory by [4] (see
also [5]).

Due to the linear description, the usual backward inte-
gration in time of the HJB equation can be replaced by
computing expectation values under a forward diffusion pro-

cess. The computation of the expectation value requires a
stochastic integration over trajectories that can be described
by a path integral. This is an integral over all trajectories
starting at x, ¢, weighted by exp(—S/v), where S is the cost
of the path (also know as the Action) and v is the size of
the noise.

The path integral formulation is well-known in statistical
physics and quantum mechanics, and several methods exist
to compute path integrals approximately. In section 2.1 we
introduce the Laplace approximation, which approximates
the integral by the path of minimal S. This approximation
is exact in the limit of ¥ — 0, and the deterministic control
law is recovered.

When noise is large, the Laplace approximation may not
be sufficiently accurate A very generic and powerful alter-
native is Monte Carlo (MC) sampling, which we introduce
in section 2.2. The theory naturally suggests a naive sam-
pling procedure, but is also possible to devise more efficient
samplers, such as importance sampling.

We illustrate the method on a time-invariant receding
horizon control problem. The receding horizon problem is
to optimize the expected cost over a fixed future time hori-
zon. This problem is similar to the RL discounted reward
cost. Finally, in section 3 we give a number of illustrative
numerical examples.

2. PATH INTEGRAL CONTROL

In this section, we introduce a class of non-linear stochas-
tic optimal control problems for cooperative behaviour be-
tween agents. For simplicity, we restrict ourselves to the
one-dimensional case. Let us assume that an agent at
location = moves through an environment according to a
stochastic dynamical equation:

do = f(x,t)dt + udt + dé (1)

d€ is a Wiener processes with <d§2> = vapdt 2. f(x,t) is an
arbitrary non-linear function, specifying the intrisic dynam-
ics of the agent. w is the control term and (like the noise) is
considered to act additively .

The control or planning problem is to find the control path
u(t — ty) between the current time ¢ and some future time
ty such that the expected cost

C(z,t,u(t —ty)) =

tf R
(st + [T arfuerr +vamn) @
t T
is minimized, with x the state of the agent at time t. ¢
and V are arbitrary non-linear functions, but the cost of the
control u is quadratic.
To solve the control problem one defines the optimal cost-
to-go

J(t,z) = min C(tz,u(t — ty)) (3)

u(t—ty)

! Generalization to higher dimensions is straightforward and
2 can also denote a vector of generalized coordinates (po-
sitions, velocities, orientation) of a number of agents. The
general framework is discussed in [8].

2 A Wiener process can be intuitively understood as the con-
tinuum limit of a random walk with time steps dt and space
steps of O(Vvdt).

3Eq. 1 can be generalized to the case where dz = f(x,t)dt+
g(z,t)(udt + d€), but this generalization is not treated in
this paper.



J satisfies a partial differential equation

—0ud(z,t) = fi(azJ(x,t))Q+V(x,t)+f(x,t)81<](x,t)
+ %V@iJ(x,t) (4)
uw = —R7'9.J(x,t) (5)

which is the Stochastic Hamilton-Jacobi-Bellman Equation
with boundary condition J(z,t;) = ¢(z).

The HJB equation is a non-linear (due to the quadratic
term) partial differential equation. We can, remove the
non-linearity and this will turn out to greatly help us to
solve the HJB equation. Define v (z,t) through J(z,t) =
—Alog¢(z,t), with A = vR a constant. Then the HJB be-
comes

*atw(xﬂt) =
(2D 4 s, + Lo vty @)

Eq. 6 must be solved backwards in time with (z,t;) =
exp(—(z)/A)-

The linearity allows us to reverse the direction of compu-
tation, replacing it by a diffusion process, in the following
way. Let p(y,7|z,t) describe a diffusion process for 7 > t
defined by the Fokker-Planck equation

1% 1
=P 0u(fp) + 5v05p (7

with p(y, tlz,t) = 6(y — z).

Define A(z,t) = [dyp(y, 7|z, t)(y, 7). It is easy to see
by using the equations of motion Eq. 6 and 7 that A(z,t)
is independent of 7. Evaluating A(z,t) for 7 = ¢ yields
A(z,t) = ¢(z,t). Evaluating A(z,t) for 7 = t; yields
A(z,t) = [dyp(y,tslz, t)w(z,ty). Thus,

/ dyp(y,trlz, ) exp(—d(m)/A)  (8)

We arrive at the important conclusion that the optimal cost-
to-go J(z,t) = —Alogt(z,t) can be computed either by
backward integration using Eq. 6 or by forward integration
of a diffusion process given by Eq. 7. The optimal control is
given by Eq. 5.

Although Eq. 8 gives an explicit solution for the control
problem, we often cannot compute the solution analytically
and we must use either analytical approximations or sam-
pling methods. For this reason, we write the diffusion ker-
nel p(y,ts|z,t) in Eq. 8 as a path integral. This gives us a
particular simple interpretation of how to estimate optimal
control in terms of sampling trajectories. The result is [8]

J1asttexp (=5 Spuntate — )

Spn(a(t = t7) = [ 5= HTRG = )+ V(a().7)

O-p=

77/1(-’5715) =

ply,tylz,t) =

J[dz]¥% denote the sum over all trajectories that start at x
and end at y. Substituting this in Eq. 8 we obtain
1
J(z,t) = f/\log/[dx]z exp <7XS(x(t — tf))) 9)
where the path integral [[dz]. is over all trajectories starting

at ¢ and S = Spatn + ¢. The path integral is a log partition
sum. The partition sum is not over configurations, but over

trajectories. S(xz(t — ty)) plays the role of the energy of a
trajectory and A is the temperature.

2.1 The Laplace approximation

The simplest algorithm to approximate Eq. 9 is the Laplace
approximation, which replaces the path integral by a Gaus-
sian integral centered on the path that that minimizes the
action. Let us discretize the path by n time segments: z (¢t —
ty) = xown. For each zo denote z7.,, = argminzlinS(mo;n)
the trajectory that minimizes S and z* = (zo,z1.,). We
expand S(z) to second order around z* : S(z) = S(z*) +
1z —2*)"H(z")(z — ), with H(z") the n X n matrix of
second derivatives of S, evaluated at z*. When we substi-
tute this approximation for S(x) in Eq. 9, we are left with a
n-dimensional Gaussian integral, which we can solve exactly.
The resulting optimal value function is then given by

" A ve\ ™ N
Japlace (zo) = S(z™) + 5 log (7) det H(z™) (10)

The control is computed through the gradient of J with
respect to xg. The second term, although not difficult to
compute, has typically only a very weak dependence on xg
and can therefore be ignored. In general, there may be more
than one trajectory that is a local minimum of S. In this
case, we use the trajectory with the lowest Action.

2.2 MC sampling

From the path integral Eq. 9 we infer that there is a sim-
ple way to compute it by sampling. The action contains a
contribution from the drift and diffusion £ (&— f)?, one from
the potential V' and one from the end cost ¢. One can con-
struct trajectories according to the drift and diffusion terms
only and assign to each trajectory a cost according to both
V and ¢ in the following way.

Define the stochastic process

de = f(z,t)dt+ d¢ (11)

Then, Eq. 8 is estimated by

@(xﬂf)

Z o (it — 14))/3)

Scost (2(t — t5))

x(ty)) / drV(z(r),7) (12)

The computation of u requires the gradient of v (z,t)
which can be computed numerically by computing ¢ at
nearby points z and x &+ éz for some suitable value of dx.

2.3 The receding horizon problem

Up to now, we have considered a control problem with a
fixed end time. In this case, the control explicitly depends
on time as J(z,t) changes as a function of time. Below,
we will consider reinforcement learning, which is optimal
control in a stationary environment with a discounted future
reward cost. We can obtain similar behavior within the path
integral control approach by considering a finite receding
horizon. We consider a dynamics that does not explicitly
depend on time f(z,t) = f(x) and a stationary environment:
V(z,t) = V(z) and no end cost: ¢(z) = 0. The optimal



cost-to-go is given by

J(x)

—Alog / dyp(y,t + T'lz,1)

= —Alog /[dx]z exp <7§Spath (xt —t+ T)X)?’)

with p the solution of the Fokker-Planck equation Eq. 7 or
Spath the Action as given above.

Note, that because both the dynamics f and the cost V
are time-independent, p(y, t+7|z,t) and J(z) do not depend
on t. Therefore, if we consider a receding horizon where the
end time ty = t+7T moves with the actual time ¢, J gives the
time-independent optimal cost-to-go to this receding hori-
zon. The resulting optimal control is a time-independent
function u(z). The receding horizon problem is quite similar
to the discounted reward problem of reinforcement learning.

3. NUMERICAL EXAMPLES

We now illustrate the difference and similarity of rein-
forcement learning and path integral control for a simple
one dimensional example where the expected future reward
within a discounted or receding horizon is optimized. The
cost is given by V in figure 1 and the dynamics is simply
moving to the left or the right.

For large horizon times, the optimal policy is to move from
the local minimum to the global minimum of V' (from right
to left). The transient higher cost that is incurred by passing
the barrier with high V' is small compared to the long term
gain of being in the global minimum instead of in the local
minimum. For short horizon times the transient cost is too
large and it is better to stay in the local minimum. We refer
to these two qualitatively different policies as 'moving left’
and ’staying put’, respectively.

3.1 Reinforcement learning

In the case of reinforcement learning, the state space is
discretized in 100 bins with —2 < & < 3. The action space is
to move one bin to the left or one bin to the right: u = +dzx.
The dynamics is deterministic: po(z'|z,u) = 84/ z1.. The
reward is given by R(x,u,z’) = =V (z'), with V() as given
in figure 1. Reinforcement learning optimizes the expected
discounted reward with discount factor v with respect to m
over all future trajectories. The discounting factor v controls
the effective horizon of the rewards through thor = —1/ log .
Thus for v T 1, the effective horizon time goes to infinity.

We use the policy improvement algorithm, that computes
iteratively the value of a policy and then defines a new policy
that is greedy with respect to this value function. The initial
policy is the random policy that assigns equal probability to
move left or right.

For v = 0.9, the results are shown in fig. 1Top. Ji is
the value of the initial policy. J is the value of the policy
that is obtained after convergence of policy improvement.
The asymptotic policy found by the policy improvement al-
gorithm is unique, as is checked by starting from different
initial policies, and thus corresponds to the optimal policy.
From the shape of Jo one sees that the optimal policy for
the short horizon time corresponding to v = 0.9 is to ’stay
put’.

For v = 0.99, the results are shown in fig. 1Bottom. In
this case the asymptotic policy found by policy improvement
is no longer unique and depends on the initial policy. Jo is

v=0.9
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Figure 1: The policy improvement algorithm, that
computes iteratively the value of a policy and then
defines a new policy that is greedy with respect to
this value function. In each figure, we show V(z),
the value (1 — v)Ji(z) of the random initial policy,

and (1 — v)Jx(z) the value of the converged policy,
all as a function of =x.



the asymptotic policy found when starting from the random
initial policy and is suboptimal. Jop; is the value of the
optimal policy (always move to the left) , which is clearly
better since it has a lower value for all z. Thus, for v = 0.99
the optimal policy is to 'move left’.

This phenomenon that policy improvement may find mul-
tiple suboptimal solutions persist for all larger values of
(larger horizon times). We also ran Q-learning on the re-
inforcement learning task of fig. 1 and found the optimal
policy for v = 0.9, 0.99 and 0.999 (results not shown).

3.2 Path integral control

We now compare reinforcement learning with the path
integral control approach using a receding horizon time. The
path integral control uses the dynamics Eq. 1 and cost Eq. 2
with f(z,t) = 0, ¢(xz) = 0 and V(z,¢) = V(z) as given in
fig. 1. The solution is given by Eq. 13.

For the Laplace approximation of J, we use Eq. 10 and the
result for short horizon time 7" = 3 is given by the dashed
line in fig. 2Bottom. In fig. 2Top we show the minimizing
Laplace trajectories for different initial values of x. This
solution corresponds to the policy to 'stay put’. For com-
parison, we also show T'V/(x), which is the optimal cost-to-go
if V would be independent of .

For a relatively large horizon time 7' = 10, the Laplace
solution of the cost-to-to and the minimizing trajectories are
shown in figure 3.

In figs. 2 and 3 we also show the results of the MC sam-
pling (dashed dotted line). For each z, we sample N = 1000
trajectories according to Eq. 11 and estimate the cost-to-go
using Eq. 12.

The Laplace approximation is accurate for low noise and
becomes exact in the deterministic limit. It is a ’global’ so-
lution in the sense that the minimizing trajectory is minimal
with respect to the complete (known) state space. There-
fore, one can assume that the Laplace results for low noise in
figs. 2 and 3 are accurate. In particular in the case of a large
horizon time and low noise (fig. 3), the Laplace approxima-
tion correctly proposes a policy to 'move left’ whereas the
MC sampler proposes (incorrectly) to ’stay put’.

The conditions for accuracy of the MC method are a bit
more complex. The typical size of the area that is explored
by the sampling process Eq. 11 is 2me = V2T. In order for
the MC method to succeed, this area should contain some
of the trajectories that make the dominant contributions to
the path integral. When T'= 3,v = 1, xme = 1.7, which is
sufficiently large to sample the dominant trajectories, which
are the ’stay put’ trajectories (those that stay in the local
minima around z = —2 or x = 3). When T = 10,v = 1,
Tme = 3.2, which is sufficiently large to sample the dominant
trajectories, which are the 'move left’ trajectories (those that
move from anywhere to the global minimum around z =
—2). Therefore, for high noise we believe the MC estimates
are accurate.

For low noise and a short horizon (T" = 3,v = 0.01),
Zme = 0.17 which is still ok to sample the dominant ’stay
put’. However, for low noise and a long horizon (7' = 10,v =
0.01), zme = 0.3 which is too small to likely sample the
dominant 'move left’ trajectories. Thus, the MC sampler is
accurate in three of these four cases (sufficiently high noise
or sufficiently small horizon). For large horizon times and
low noise the MC sampler fails.

Thus, the optimal control for short horizon time T' = 3 is

4
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Figure 2: Top: Trajectories zj., that minimize
the Action S used in the Laplace approximation.
T = 3,R = 1. Time discretization dt = T/n,n = 10.
Bottom: Optimal cost-to-go J(z) for different = us-
ing the Laplace approximation (Ji,, dotted) and the
MC sampling (Jmc) for v = 0.01 (dashed) and v =1
(dashed-dotted).
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Figure 3: Top: Trajectories z}, that minimize
the Action S used in the Laplace approximation.
T =10,R = 1. Time discretization dt = T'/n,n = 10.
Bottom: Optimal cost-to-go J(x) for different = us-
ing the Laplace approximation (Ji,, dotted) and the
MC sampling (Jmc) for v = 0.01 (dashed) and v =1
(dashed-dotted).

to ’stay put’ more or less independent of the level of noise
(fig. 2 Jip, Jme(v = 0.01) and Jmc(v = 1)). The optimal
control for large horizon time 7" = 10 is to 'move left * more
or less independent of the level of noise (fig. 3 Jip, Jmc(v =
1)).
Note, that the case of a large horizon time corresponds to
the case of 7 close to 1 for reinforcement learning. We see
that the results of RL and path integral control qualitatively
agree.

3.2.1 Exploration

When the environment is not known, one needs to learn
the environment. One can proceed in one of two ways that
we denote as model-based or model-free. The model-based
approach is simply to first learn the environment and then
compute the optimal control. The learning of the environ-
ment requires exploration of the environment. After the
model is learned, there is an optimal control computation
left to be done, which is typically intractable but can be com-
puted efficiently within the path integral framework. The
model-free approach is to interleave exploration (learning
the environment) and exploitation (behave optimally in this
environment).

The model-free approach leads to the exploration-exploitation

dilemma. The intermediate controls are optimal for the lim-
ited environment that has been explored, but are of course
not the true optimal controls. These controls can be used
to optimally exploit the known environment, but in general
give no insight how to explore. In order to compute the truly
optimal control for any point z one needs to know the whole
environment. At least, one needs to know the location and
cost of all the low lying minima of V. If one explores on the
basis of an intermediate suboptimal control strategy there is
no guarantee that asymptotically one will indeed explore the
full environment and thus learn the optimal control strategy.

Therefore we conclude that control theory has in principle
nothing to say about how to explore. It can only compute
the optimal controls for future rewards once the environ-
ment is known. The issue of optimal exploration is not ad-
dressable within the context of optimal control theory. This
statement holds for any type of control theory and thus also
for reinforcement learning or path integral control.

In the case of the receding horizon problem and path in-
tegral control, we propose naive sampling using the diffu-
sion process Eq. 11 to explore states x and observe their
costs V(z). Note, that this exploration is not biased to-
wards any control. We sample one very long trace at times
T =14dt,i =0,..., N, such that Ndt is long compared to the
time horizon T'. If at iteration ¢ we are at a location x;, we
estimate 1 (z;,0) by a single path contribution:

dt "
$(,0) = oxp (7 S wxj)) (14

with 7' =ndt and z;,j =4+ 1,...,7+n the n states visited
after state x;. We can compute this expression on-line by
maintaining running estimates of 1 (z;) values of recently
visited locations z;. At iteration i we initialize 1 (z;) = 1
and update all recently visited 1 (x;) values with the current
cost:

Y(xi) = 1
P(xg) — w(wj)eXp<_%V($i)), j=i—-n+2...,i—1
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Figure 4: Sampling of J(z) with one trajectory of
N = 8000 iterations starting at x = 0. Left: The
diffusion process Eq. 11 with f = 0 explores the
area between r = —7.5 and z = 6. Shown is a his-
togram of the points visited (300 bins). In each
bin z, an estimate of (z) is made by averaging
all ¢(z;) with z; from bin z (not shown). Right:
Jr(z)/T = —vlogy(z)/T versus z for T = 3 and
T = 10 and V(z) for comparison. Time discretiza-
tion dt =0.02, v =1, R =1.

The results are shown in fig. 4 for the one-dimensional
problem introduced in fig 1. We use a run of N = 8000
iterations, starting at * = 0. The diffusion process explores
in expectation an area of size VvNdt = 12.3 around the
starting value. From this one run, one can estimate simul-
taneously J(z) for different horizon times (7' = 3 and 7' = 10
in this case). Note, that these results are similar to the MC
results in fig. 3.

By exploring the space according to Eq. 11, we can learn
the environment. Once learned, we can use it to compute
the optimal exploitation strategy as we discussed before. As
we discussed before, we have no principled way to explore.
Instead of using Eq. 11 we could choose any other random
or deterministic method to decide at which points in space
we want to compute the immediate cost and the expected
cost-to-go. Our estimated model of the environment at time
t can tell us how to best exploit it between ¢ and ¢ + 7', but
does not provide any information about how to explore those
parts of the state space that have not yet been explored.

There is however, one advantage to use Eq. 11 for ex-
ploration, and that is that it not only explores the state
space and teaches us about V(x) at each of these states,
but at the same time provides a large number of trajectories
Tiitn,t = 1,... that we can use to compute the expected
cost to go. For different n, one obtains optimal control esti-
mates for different horizon times.

3.3 Comparing RL and PI control

Let us here briefly summarize the main differences and
similarities between the discounted reward problem using a
reinforcement learning method and path integral control.

Suppose that the environment consists of X states. When
the environment is not known, both RL and PI control must
learn or sample the environment in some way which requires
for either method O(X) steps. Subsequently, the discounted
reward problem requires the solution of the Bellman equa-
tion, which is a system of X recursive equations involving

X rewards and X unknowns, which are the values at these
X states . Through these equations, the value of each state
depends on the value of each other state. One empirically
observes that tcpu o 1/(1 — ) and if we define the horizon
time as T'= —1/log~y then tcpu = T'. The solution requires
thus at least O(T'X) steps, i.e. linear in the horizon time
and exponential in the number of dimensions.

Path integral control is different in the sense that the
closed form solution Eq. 8 gives the value of each state in
terms of all X rewards, but this can be computed indepen-
dent from the value (or cost-to-go) at other states. Thus,
PI control can restrict the computation of optimal control
to the points of interest (the location of the agent). The
complexity to compute the PI control depends on the time
discretization n = T'/dt and on the dimensionality of the
problem d. The Laplace approximation requires the min-
imization of the Action, which due to its sparse structure
can be done in O(nd) time.

The MC sampling requires a constant (possibly large)
number of sampling trajectories each of length n and is
therefore also proportional to n. How the required number
of sample trajectories scales with d is not known in general
for Monte Carlo sampling. However, the Monte Carlo sam-
pler is well known to be a very efficient method to approx-
imate high dimensional integrals. The standard argument
is that if one is able to sample points independently from a
proposal distribution, the MC method gives an unbiased es-
timate whose variance scales proportional to 1/ VN with N
the number of sample trajectories independent of the dimen-
ston of the problem. Thus, MC sampling requires O(Nn)
steps with IV possibly mildly depending on d. The key is-
sue is then whether one can design a method that generate
independent samples from a good proposal distribution.

Computation time for PI control increases linear with n
which may grow sublinear with 1" because the appropriate
time discretization for large horizon time need not necessary
be the same as for small horizon time and therefore n may
scale sub-linear with 7. In fact, one could possibly choose
n independent of T'.

In the case of the discounted reward problem, the compu-
tation of the value of the states depends on  and for differ-
ent v the Bellman equations need to be solved separately.
In the case of PI control, the solution for larger horizon time
can be obtained by simply running the diffusion process for
more time. The optimal control computation for the larger
horizon time makes then effective use of the previously com-
puted solution for shorter horizon time. We saw an example
of this in section 3.2.1.

With respect to exploration, RL and PI control are not
very different. Both require to learn a model of the en-
vironment. In general, the control strategy that is opti-
mal with respect to the partial environment that has been
observed does not need to be a good strategy for explo-
ration. If the objective is to learn a truly optimal control,
the whole environment needs to be explored. When ad-
ditional assumptions about the environment are made (for
instance smoothness) this exploration can be made more ef-

4One may argue that online methods such as TD learning
[12] and Q learning [13] are more efficient than solving the
Bellman equation explicitly. This may be true for some
problems, but in general convergence of these algorithms
require that all states are visited ’sufficiently often’ and thus
their complexity is also proportional to X.



ficient by relying on interpolation and extrapolation between
observed states. The issue of optimal exploration is not ad-
dressed within control theory (equally for PI control and
for reinforcement learning) and requires extra criteria that
determines the agents curiosity and willingness to explore.

4. DISCUSSION

In the most general, and most interesting, case, stochastic
optimal control is intractable and this has been a major ob-
stacle for applications both in artificial intelligence and in bi-
ological modeling. We have introduced a class of non-linear
stochastic control problems that can be efficiently solved.
In this control formalism, the central concept of cost-to-go
becomes a free energy and methods and concepts from sta-
tistical physics can be readily applied. We have treated the
Laplace approximation and MC sampling as examples of
such efficient methods. Other methods are the mean field
theory and belief propagation [3]. We believe that the PI
control method is a unique approach to efficiently solve a
class of continuous non-linear stochastic control problems.

We have discussed a time-independent delayed reward
problem where the expected future cost in a receding horizon
has to be minimized. This problem is traditionally solved
using reinforcement learning and we have compared that ap-
proach to the path integral approach. Both methods give
more or less the same qualitative behavior as a function of
the horizon time and there seems to be a rather mild de-
pendence on the noise in the problem. The advantage of
the PI approach is that the solution can be computed more
efficiently than using traditional RL methods.

An important issue not treated in this paper is planning
in a receding horizon problem with a time-varying reward.
This issue is very relevant for multi-agent systems, such as
robot soccer or other problems where the optimal course of
action of each agent depends on the expected future states
of the other agents. Such problems cannot be treated in the
classical RL framework because the optimal policy does not
depend on time, but can be naturally incorporated in the
PI control method. An example was treated in [15] where
it was shown how a team of agents delays their decision
to go to one of a number of target locations depending on
what the other agents do. There is a non-trivial timing issue
when to make these decisions and this solution manifests
itself a a spontaneous symmetry breaking of the cost-to-go
J(z,t). In this case, the environment was stationary and
the horizon was fixed (not receding). Similar (and probably
more complex and interesting) behaviours are expected in
such dynamical settings. In this case, the agent must learn
a dynamical model of the expected behaviour of the other
agents (and possibly itself).
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