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Abstract

In this paper, we aim to provide a theoretical framework through which
to understand a variety of stochastic optimization methods. We describe
a general procedure for stochastic optimization that is based on the EM
algorithm. We show that this method turns out to be the general case
of a large number of population-based stochastic optimization procedures
including genetic algorithms, stochastic hill-climbing methods, the cross-
entropy method, population-based incremental learning, and others. This
unifying perspective may facilitate our understanding of the relative per-
formance of these methods. For example, one of the key insights that this
perspective provides is that different population-based procedures can be
largely differentiated on the basis of the probability model that they (ei-
ther explicitly or implicitly) assume underlies the problem domain. Pro-
cedures that assume probability models that are either inappropriate or
inadequate for the problem domain can perform poorly on these problems.

1 Introduction

A typical optimization problem consists of a set X and a function φ : X 7→
R that assigns a value or utility to each element of X . The set X can be
a continuous space, e.g. X ⊆ Rd, or a discrete and finite set, e.g. X =
{x1,x2, . . . ,xi, . . . ,xN}. The objective of the optimization problem is to find

x̂ = argmax
x∈X

φ(x), (1)

or the element of X that has the highest value according to φ. The element x̂
is said to be the solution of the optimization problem.

Population-based methods for optimization represent candidate solutions as
distribution of points, i.e. x̃1:M ⊆ X . In these cases, the objective is to find

x̂1:M = argmax
{x̃1:M}

1
M

M∑
m=1

φ(x̃m), (2)
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or the distribution of points with the highest average value according to φ. The
set of procedures commonly known as Genetic Algorithms (GAs), see e.g. [8],
and Stochastic Hill-Climbing (SHC) methods, see e.g. [9], are two widely used
and familiar examples of population-based optimization methods.

As any set of points, such as x̃1:M ⊆ X , can be represented as a probability
distributions over X , as in P(x ∈ X ) = 1

M

∑M
m=1 δ(x − x̃), population-based

methods for optimization can be generalized to include methods that explicitly
describe a candidate solution as a probability distributions over the set X . In
these cases, if we parameterize a probability distribution over X according to
P(X

∣∣θ), then an objective for this optimization problem could be

θ̂ = argmax
θ∈θ

N∑
i=1

φ(xi)P(xi

∣∣θ). (3)

In other words, the objective is to find a probability distribution over the set X
that will maximize X ’s expected value according to φ. Population-based meth-
ods that explicitly define probability distributions include population-based
incremental learning (PBIL) [1, 2], the cross-entropy method (CE) [12], the
MIMIC method of [4], and the Bayesian Optimization Algorithm of [11].

Equation (3) can be regarded as the general case of the objective function
for population-based optimization methods. (We can see that (2) is a special
case of (3), if we substitute 1

M δ(xi − x̃) for P(xi

∣∣θ) in (3) and regard the set
of parameters as the set {x̃1:M}). In this paper, we describe an algorithm for
optimizing

E(θ) = log
N∑

i=1

φ(xi)P(xi

∣∣θ), (4)

with respect to θ (As log is a monotonic transformation, any optimum of E(θ)
will also be a solution of (3)). This method relies upon the iterative introduction
and maximization of a free-energy lower bound on E(θ), and is derived from
similar principles to those of the EM algorithm of [6] and its generalizations, e.g.
[10]. This method represents the general case of a large number of population-
based stochastic optimization procedures. These include the already mentioned
GAs, SHCs, PBIL, CE method, MIMIC, and BOA. These principles are also
implemented in a reinforcement learning procedure known the relative payoff
procedure (RPP), [7]. In fact, the RPP was shown by [5] to be a version of the
em algorithm. The analysis of [5] was the initial motivation for this work.

In what follows, we describe a general algorithm for population-based opti-
mization that is based on principles similar to those of the em algorithm. We
illustrate how this algorithm works using a simple toy optimization problem.
We then proceed to explain how the population-based search methods men-
tioned above can be seen as special cases of this general method. This leads to
the insight that the central feature that differentiates between these population-
based methods is the probability distribution that they assume. We conclude
with a discussion of the role played by the probability model that is assumed in
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population-based optimization methods. We demonstrate by way of a set of ex-
amples how probability distributions that are ill-suited to the problem domain
can lead to poor performance.

2 Algorithm Optimizing E(θ).
In this section, we apply the generalized EM algorithm, e.g. [6, 10], for the
purposes of optimizing (4). As a reminder, EM for maximum-likelihood esti-
mation works as follows. In a probabilistic model M, with parameters A and
latent-variables B, we are interested to maximize the log-likelihood

L (A) = log
∫
dB P

(
D,B

∣∣A) . (5)

To do so, we express (5) in an equivalent form

L (A) =
∫
dB q (B) log

P
(
D,B

∣∣A)
q (B)

, (6)

where q (B) = P
(
B
∣∣D,A). Holding q (B) constant we iteratively maximize (6)

with respect to A and then re-compute q (B). If these iterations are exact,
they will monotonically increase L (A). The generalized EM allows for approx-
imations in calculating q (B) and for increasing, rather than just maximizing,
(B.

To optimize E(θ) in a manner similar to the generalized EM algorithm, e.g.
[6, 10], we first introduce F(q,θ), a lower bound on E(θ), as follows:

E(θ) = log
N∑

i=1

q(xi)φ(xi)
P(xi

∣∣θ)
q(xi)

, (7)

≥
N∑

i=1

q(xi)φ(xi) log
P(xi

∣∣θ)
q(xi)

, (8)

= F(q,θ). (9)

The equality (7) holds trivially for any function q: X 7→ R. As log is a concave
function, then (8) follows from Jensen’s inequality 1, so long as 0 ≤ q(xi)φ(xi) ≤
1 and

∑N
i=1 q(xi)φ(xi) = 1.

We optimize F(q,θ) with respect to both q and θ. This proceeds iteratively,
first by holding θ constant and optimizing wrt to q, and then by holding q
constant and optimizing wrt θ. In other words, having chosen an arbitrary

1Jensen’s Inequality: If f is a concave function and 0 ≤ λi ≤ 1 and
PN

i=1 λi, then

f(

NX
i=1

λixi) ≥
NX

i=1

λif(xi).
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Figure 1: An illustration of the general procedure for stochastic optimization
described in Section 2.

initial parameter setting θ0, for t≥0, we recursively perform the following two
steps:

qt (x) = argmax
q

F(q,θt), (E-step) (10)

θt+1 = argmax
θ

F(qt (x) ,θ), (M-step). (11)

If for any θt, we can find a qt (x) such that (8) is an equality then this iterative
procedure will always monotonically increase E(θ) with respect to θ. The iter-
ation of (10) and (11) for 0 ≤ t ≤ T will result in a sequence {qt (x) ,θt}t=T

t=0 .
For any t, E(θt+1) ≥ E(θt) as

E-step︷ ︸︸ ︷
E(θt) = F(qt (x) ,θt)

M-step︷ ︸︸ ︷
≤ F(qt (x) ,θt+1)

Jensen’s Inequality︷ ︸︸ ︷
≤ E(θt+1) . (12)
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2.1 E-step

For parameter setting θt, we find qt (x) as defined by (10) by maximizing
F(q,θt), subject to the constraint that

N∑
i=1

q(xi)φ(xi) = 1. (13)

Enforcing this normalizing constraint with Lagrange multipliers, we find the
point where the derivative of

F(q,θt) + λ

(
1−

N∑
i=1

q(xi)φ(xi)

)
, (14)

vanishesand obtain the solution

qt(xi) =
P(xi

∣∣θt)∑N
j=1 P(xj

∣∣θt)φ(xj)
. (15)

Substituting (15) into (8), we see that F(qt (x) ,θt) = E(θ).

2.2 M-step

From (15) and (8), we have F(qt (x) ,θ)

=
1
Z

N∑
i=1

P(xi

∣∣θt)φ(xi) log P(xi

∣∣θ) +H(qt (x)), (16)

where

Z =
N∑

j=1

P(xj

∣∣θt)φ(xj), (17)

and H(qt (x)) is the entropy of the distribution qt(x). As neither Z and
H(qt (x)) depend on θ, argmaxθ F(qt (x) ,θ)

= argmax
θ

N∑
i=1

P(xi

∣∣θt)φ(xi) log P(xi

∣∣θ). (18)

It is useful to note that maximizing (16) is identical to minimizing the Kullback-
Liebler divergence between P(x

∣∣θ) and the probability distribution defined by
1
Z P(x

∣∣θt)φ(xi). In other words, the algorithm as a whole can be viewed as
iteratively fitting the probability distribution at time t+1 to normalized product
of the probability distribution at time t and the objective function φ(x). This
results in a sequence of probability model inductions that will converge to a
model that will maximize the expectation given in (4).
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2.3 Sampling

Our objective function in the M-step is

argmax
θ

N∑
n=1

P(xn

∣∣θt)φ(xn) log P(xn

∣∣θ). (19)

In anything other than small problems, we can not evaluate each of the N values
that xn can take, and it is necessary to approximate P(X

∣∣θt) as

P(xn

∣∣θt) ≈ 1
M

M∑
m=0

δ (xn − x̃m) (20)

where {x̃m}Mm=0 ∼ P(xn

∣∣θt), and M � N . Substituting (20) into (19) and
ignoring the constant 1

M , we have our new objective for the M-step as

argmax
θ

M∑
m=1

φ(x̃m) log P(x̃m

∣∣θ). (21)

The pseudo-code for this method is provided in Algorithmm 1.

Algorithm 1 Generalized EM for optimizing E(θ).
Initialize: t = 0, θt ← θrand, converge = 0

while ¬converge do
Sample:

{x̃t
m}Mm=1 ∼ P

(
x̃
∣∣θt
)

Evaluate:
{φ(x̃t

m)}Mm=1

Maximize:

θt+1 ← argmax
θ

M∑
m=1

φ(x̃t
m) log P

(
x̃t

m

∣∣θ)
if θt+1 = θt then

converge = 1
else
t = t+ 1

end if

end while

2.4 A Toy Problem

In Figure 1, we illustrate a simple one-dimensional optimization problem. Find-
ing the maxima of functions of one-dimension spaces is not a particularly chal-
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lenging problem, yet this toy problem is valuable for the clarity it provides.
Subfigure (a) depicts an objective function φ(x) over R1. As is evident, there
is a single global maximum, with three additional local maxima. According to
our probabilistic interpretation of the problem of optimization, our objective
to find the probability distribution that will maximize

∫
dxφ(x)P(x

∣∣θ) with re-
spect to θ. To do so, following the specifications of Algorithm 1, at each time
t we sample from a distribution P(x

∣∣θt), evaluate each sample according to
φ(x) and then effectively fit a new model P(x

∣∣θt) to the distribution defined by
1
Z P(xi

∣∣θt)φ(xi).
The form of the probability model in this example is a Mixture of Gaussians

model. In other words, P(x
∣∣θ) ,

∑K
k=1N (x

∣∣µk, σ
2
k)πk, where µk, σ2

k and πk are
the means, variances and mixing proportions of the kth component Gaussian.
From (21), the objective is

argmax
{µ,σ,π}

M∑
m=1

φ(x̃m) log
K∑

k=1

N (x̃
∣∣µk, σ

2
k)πk. (22)

This can be solved by a routine application of the EM algorithm for (weighted)
maximum-likelihood estimation. The E-step yeilds

P(k
∣∣x̃m,θ) =

N (x̃
∣∣µk, σ

2
k)πk∑K

k′=1N (x̃
∣∣µk′ , σ2

k′)πk′
. (23)

The M-step yields

πk =
M∑

m=1

φ(x̃m)∑M
m′=1 φ(x̃m′)

P(k
∣∣x̃m,θ), (24)

µk =
∑M

m=1 P(k
∣∣x̃m,θ)φ(x̃m)x̃m∑M

m′=1 P(k
∣∣x̃m′ ,θ)φ(x̃m′)

(25)

and

σ2
k =

∑M
m=1 P(k

∣∣x̃m,θ)φ(x̃m)‖x̃m − µk‖∑M
m′=1 P(k

∣∣x̃m′ ,θ)φ(x̃m′)
. (26)

Subfigure (b) shows the initial probability distribution, or P(x
∣∣θ1), and Sub-

figures (c), (d), (e) and (f) show the probability models learned at times 3, 5,
10 and 25, respectively. The process starts out by fitting the probability dis-
tribution P(x

∣∣θ) to the general form of the objective φ(x). This is evident in
Subfigure (c). It proceeds to place mass primarily in the vicinity of points cor-
responding to maxima of φ(x), e.g. Subfigure (d). Eventually, the mass in the
vicinity of local maxima recede, Subfigure (e), and all mass is placed around the
global maximum, Subfigure (f). In this example, the sequence of probability
models converge to one that is sharply peaked around the value x = −1.4981
(the global maximum of φ(x) occurs at x = −1.5052).

7



3 Stochastic Search Methods

In this section, we describe how the method described above provides the gen-
eral case of the a wide range of population-based procedures such GAs, SHC
methods, PBIL, the CE method, MIMIC and BOA.

3.1 Genetic Algorithms

Genetic algorithms, as mentioned in Section 1, represent candidate solutions
to optimization problems as distributions, or populations, of points, i.e. x̃1:M .
The aim of the GA is to evolve this distribution using fixed evolution rules,
so that the average value of the candidate solution according to φ : X 7→ R
increases. In general, the update rules take the following form: A randomly
chosen, initial population is evaluated according to the objective function, and
the highest scoring vectors are retained2. The members of this high-scoring set
are then paired and crossed-over to form new offspring vectors. This progeny
set is then taken to be the next generation, and the evaluation, selection and
reproduction procedures are iterated. The manner of the so-called reproduction
procedures can vary considerably. A common scenario, and one we will con-
centrate on here, is known as one-point crossover. In this scenario, two vectors
xA = x

[A]
1:K and xB = x

[B]
1:K generate offspring vectors by randomly choosing a

position 1 ≤ k ≤ K and crossing-over so as to form xC = [x[A]
1:k x

[B]
k+1:K ]. It is

common that the resulting offspring are then perturbed by random mutation,
such as by the addition of independent Gaussian noise with variance σ2 to each
element of the vector xC . Here, we show that this procedure is equivalent to
representing a candidate solution to an optimization problem as a probability
distribution P

(
x
∣∣θ). This probability distribution is then updated according

to the Equation 21, with the result that the expected value of the probability
distribution increases.

Given a population x̃1:M whose members repeatedly pair and crossover in
the one-point crossover manner, the set of offspring vectors can be as described
as being a sample from the probability distribution

P
(
x
∣∣x̃1:M

)
=

K−1∑
k=1

P(k)
M∑

m=1

N (x̃[m]
1:k ,Σ

[k])
M

∑
m′ 6=m

N (x̃[m′]
k+1:K ,Σ

[K−k])
M − 1

.
(27)

Here, P(k) is the probability of choosing location k as the crossover point, and
Σ[k] = σ2Ik is a k × k Gaussian covariance matrix with σ2 on the diagonal and
zero elsewhere (Ik is a k× k identity matrix), with Σ[K−k] defined analogously.
As can be seen, sampling from (27) involves choosing a location k according to
P(k), choosing m uniformly at random and then sampling a k length vector from
the Gaussian with covariance Σ[k] = σ2Ik centered on x̃[m]

1:k . This is followed by

2The proportion retained is variable.
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choosing m′ uniformly at random from the set {1, 2, . . .m − 1,m + 1 . . .m},
and then sampling a K − k length vector from the Gaussian with covariance
Σ[K−k] = σ2IK−k centered on x̃[m′]

k+1:K . The resulting K length sample vector is
formed by concatenating the k andK−k length vectors. This process is identical
to drawing pairs uniformly at random from the population x̃1:M , choosing a
crossover point k according to P(k), crossing-over the pair of vectors at this
point, finally mutating each vector so formed by adding Gaussian noise, with
fixed variance σ2, independently to the each of its elements.

In a GA, an initial population of vectors is evaluated according to φ : X 7→ R,
and the vectors {x̃m : φ(x̃m) > γ0} are selected. Here, γ0 is the 1 − ε-quantile
score of the set x̃[0]

1:M . If we take the free parameters of (27) to be the centres
of the Gaussian distributions, finding

θt+1 = argmax
θ

∑
{m : φ(x̃m)>γ0}

log P
(
x̃m
∣∣θ) (28)

is simply a matter of setting the centres to be the set {x̃m : φ(x̃m)}. The next
generation then is a sample from this new distribution

P
(
x
∣∣θt+1

)
=

K−1∑
k=1

P(k)
∑

{m : φ(x̃m)>γ0}

N (x̃[m]
1:k ,Σ

[k])∑M
m=1 I(φ(x̃m) > γ0)

×
∑

{m′ : φ(x̃m′ )>γ0∩m′ 6=m}

N (x̃[m′]
k+1:K ,Σ

[K−k])∑
m′ 6=m I(φ(x̃m′) > γ0)

.

(29)

This process is a special case of Algorithm 1, with the exception that the φ
function is thresholded and the function to be maximized with respect to θ is

M∑
m

I
(
φ(x̃[m]) > γ

)
log P

(
x̃[m])

∣∣θ) (30)

rather than
M∑
m

φ(x̃[m]) log P
(
x̃[m]

∣∣θ) . (31)

3.2 Stochastic Hill-climbing

Stochastic hill-climbing (SHC) is perhaps the simplest stochastic optimization
method. Applied to the problem described in Section 1, it works as follows.
From the set X = {x1,x2, . . . ,xN}, we choose a uniformly random subset Y0 =
{xy0(1),xy0(2), . . . ,xy0(m), . . . ,xy0(M)}, where y0 is a vector indicating M ele-
ments of X , and usuallyM � N . We sample, with replacement, from the set Y0,
and randomly perturb each sample to obtain the set Ỹ0 = {x̃y0(1), x̃y0(2), . . . , x̃y0(m̃) . . . ,xy0(M̃)},
where M̃ >M . We evaluate the M̃ vectors according φ : X 7→ R, and choose the
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M highest scoring vectors to obtain the new set Y1 = {xy1(1),xy1(2), . . . ,xy1(m), . . . ,xy1(M)}.
The hope is that at each iteration t,

M∑
m=1

φ
(
xyt(m)

)
≥

M∑
m=1

φ
(
xyt−1(m)

)
. (32)

Although there can be no guarantees of success, the SHC method has been
shown to be surprisingly effective in combinatorial optimization test cases, [9].

In SHC, the procedure of drawing perturbed samples from some set Yt can
be likened to estimating the probability distribution from which Yt is taken,
and then drawing samples from this distribution. For example, if the vector
xn = [x[n]

1 , x
[n]
2 , . . . , x

[n]
i , . . . , x

[n]
d ]> is binary, it can be perturbed by randomly

flipping each bit x[n]
d with a fixed probably ρ, in which case

P
(
x
∣∣xn

)
=

d∏
i

ρ(1−δi
n)(1−ρ)δi

n , (33)

where the Kronecker delta δi
n = 1 if xi = x

[n]
i , and zero otherwise. Likewise,

drawing perturbed samples from Yt is equivalent to sampling from

P
(
x
∣∣Yt

)
=

1
M

M∑
m=1

d∏
i

ρ(1−δi
m)(1−ρ)δi

m . (34)

We can regard (33) as a kernel function centered on xn with a concentration
parameter ρ, and (34) as a a normalized sum of M kernels centered on the M
vectors of Yt. Estimating the probability distribution from which Yt can be
seen as equivalent to finding

θt = argmax
θ

M∑
m=1

log P
(
xyt(m)

∣∣θ) (35)

where the parameters θ specify the centers of M kernels. This is a simple matter
of setting a center to each data points in Y. Choosing θt according to (35), and
then drawing samples from P

(
x
∣∣θt

)
is equivalent to drawing perturbed samples

from Yt.
The SHC method as a whole can be viewed as assuming that the distribution

P
(
X
∣∣θ) is parameterized by a set θ that specify the centers of M kernels, as in

(33). Beginning with a random initial parameter setting θ0, samples {x̃ỹ0(m̃)}M̃m̃
are drawn from P

(
x
∣∣θ0

)
. These samples are evaluated according to φ : X 7→ R

to form the set {φ(x̃y0(m̃)) : φ(x̃y0(m̃)) > γ0} where γ0 is the median value of
{φ(x̃ỹ0(m̃))}M̃m̃ . The probability distribution {φ(x̃y0(m̃)) : φ(x̃y0(m̃)) > γ0} is then
estimated, and the procedure is repeated. This is again a version of the general
procedure described above, with the exception that a threshold of φ(x) is taken.
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3.3 Population-Based Incremental Learning

The Population-Based Incremental Learning (PBIL) procedure, [1, 2], is in-
tended as a generalization of the genetic algorithm. Instead of each itera-
tion t of the algorithm being described by a population or subset of the so-
lution space, it is summarized by a multi-variate Bernoulli probability vector
θt = [pt1, pt2, . . . , pti, . . . , ptd], with each pti ∈ [0, 1]. Samples based on this
probability vector are drawn according to

P
(
x
∣∣θt

)
=

d∏
i=1

pxi
ti (1− pti)1−xi , (36)

to form {x̃m}Mm=1. These samples are evaluated according φ : X 7→ R. The new
probability vector

θt+1 = [pt+1,1, pt+1,2, . . . , pt+1,i, . . . , pt+1,d]

is updated by calculated by

pt+1,i =
∑M

m=1 x
[m]
i I(φ(x̃m) > γt)∑M

m=1 I(φ(x̃m) > γt)
, (37)

where γt is a percentile threshold score. From this, the Bernoulli probability
vector is updated as the proportion of times that x[m]

i takes the value 1 amongst
the fit members of the population.

If we assume a probability model P
(
xm

∣∣θ) in (21) that is a multi-variate
Bernoulli distribution, then it is easily verified that the solution to (21) is

pt+1,i =
∑M

m=1 x
[m]
i φ(xm)∑M

m=1 φ(xm)
, (38)

It is clear that the PBIL update method in (37) is closely related to this, but
with the additional feature that the evaluated samples are ranked and only those
above a threshold are used for the probability model update.

3.4 Cross-Entropy Method

The cross-entropy (CE) method, [12], is a method for rare-event simulation, or
calculating expectations

∫
dx ψ(x)P(x) when ψ(x) ≈ 0 for most x. It is based on

iteratively calculating optimal importance sampling distributions. Applied to
an optimization problem as in Section 1, the CE method considers this problem
analogous to finding an optimal distribution P

(
x|θ̂
)

that would sample from
states in X that are close to optimal values according to φ : X 7→ R. Applying
their method for deriving an optimal importance sampler to finding θ̂ they
obtain iterations

θt+1 ← argmax
θ

M∑
m=1

I(φ(x̃m) > γt) log P
(
x̃m

∣∣θ) , (39)

11



where {xm}Mm=1 are drawn from ∼ P
(
x
∣∣θt−1

)
, and γt is again the 1 − ε-

quantile score of the set {xm}Mm=1 according to φ : X 7→ R (I is an indicator
function, and equal to one if its argument is true). In examples, they con-
sider the case, like with PBIL, where θ is a multi-variate Bernoulli vector, i.e.
θt = [pt1, pt2, . . . , pti, . . . , ptd]. In this case, (39) leads to the update procedure

pt+1,i =
∑M

m=1 x
[m]
i I(φ(x̃m) > γt)∑M

m=1 I(φ(x̃m) > γt)
. (40)

If the CE method is taken in its most general form, it is precisely a version
of the general method we describe in Section 2. The only difference between
the two methods is that in CE the score according to φ is thresholded. The
performance of CE in any problem will depend largely upon the probability
model in (39). In many examples, the probability models are chosen for their
analytical simplicity. Such is the case when the probability model is taken to
be a multi-variate Bernoulli vector. While this choice greatly facilitates the
implementation of algorithms, it can weaken the method and will lead to poor
performance in difficult problems, as will be explained in Section 4.

3.5 Non-independent stochastic search methods

In GAs, PBIL, and the example implementations of the CE that we described,
the probability model on which they are based is a multivariate Bernoulli distri-
bution. This model assumes that the individual elements of a candidate vector
xm contribute independently to the fitness of the fitness φ(xm). In order to
introduce more general probability models, new methods have been proposed.
For example, the works by [4], [3], and [11] have noted the inadequacy of the
independence assumptions inherent in the multivariate Bernoulli probability
distribution, and have proposed alternatives that model interactions between
elements. While the multivariate Bernoulli model assumes that the distribution
over the state-space X factors as the product of marginal distributions, i.e.

P
(
x
∣∣θ) =

d∏
i=1

P
(
xi

∣∣θ) , (41)

the model proposed in both [4] and [3] assumes

P
(
x
∣∣θ) = P

(
xη1

∣∣θ) d−1∏
i=1

P
(
xηi+1

∣∣xηiθ
)
, (42)

for some permutation η of the integers 1 to d, and the model proposed by [11]
assumes

P
(
x
∣∣θ) =

d−1∏
i=1

P
(
xi

∣∣PA(xi),θ
)
, (43)

where PA(xi) denote the graphical-model parents of variable xi. In each case,
these methods proceed by fitting their probability models to the fit members
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of the population. Ideally this done by finding the optimal set of conditional
dependencies. However, greedy heuristics are used to avoid the potential com-
plexity of these searches.

Algorithm 2 General form of Genetic Algorithms, Stochastic Hill-climbing,
PBIL, Cross-Entropy method and Non-independent search methods. The dis-
tinction between these methods lies in the assumption of the form of P

(
x̃m

∣∣θ)
in the Maximization step (The γt term is variable threshold).

Initialize: t = 0, θt ← θrand, converge = 0

while ¬converge do
Sample:

{x̃t
m}Mm=1 ∼ P

(
x̃
∣∣θt
)

Evaluate:
{φ(x̃t

m)}Mm=1

Maximize:

θt+1 ← argmax
θ

M̃∑
m̃=1

I(φ(x̃m) > γt) log P
(
x̃m

∣∣θ)
if θt+1 = θt then

converge = 1
else
t = t+ 1

end if

end whilemememe

4 The Role of the Probability Model

The adequacy of the general procedure described in Section 2, and of the special
cases described in Section 3, depends to an important extent upon the probabil-
ity models that are implicitly or explicitly assumed. For example, assuming that
individual elements of a candidate vector xm contribute independently to the
fitness of the fitness φ(xm) is a poor general model, and will perform poorly in
many problems. Consider the cases in the following table: A probability model
that assumes that each element acts independently will lead to sub-optimal
performance. The problem represented here is a classical example of the xor
problem: Either the first two elements of the vector are positive, or else the
last two are positive. The second and third vectors have high fitness, but the
average of these two vectors has a low fitness. The fitness landscape of the xor
problem is bi-modal, but the probability model is unimodal.
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Figure 2: A comparison a mixture and non-mixture model on a bimodal opti-
mization problem.

x φ(x)
0000 Bad
0011 Good
1100 Good
1111 Bad

θ = [.5.5.5.5] Bad

4.1 Comparison of Mixture and Nonmixture Probability
Models

This point can be illustrated using the toy problem described previously in Sec-
tion 2. Consider the objective function shown in Figure 2 (a). This problem
has an obvious global maximum, and one considerably suboptimal local max-
imum. Subfigure (b) shows the performance of a single Gaussian model. The
single Gaussian initially spreads its mass intermediate between both maxima.
The sub-optimal maximum in this problem has a wide but shallow base. This
eventually dominates the model, exerting more influence than the narrow base
of the global maximum. The model eventually converges towards the subop-
timal maximum. On the other hand, Subfigure (c) shows the performance of
a mixture of k = 3 Gaussians. The flexibility afforded by the mixture model
allows the model to place mass in the vicinity of both maxima. Eventually the
global maximum dominates.

This point can be further illustrated by considering the Four-Peaks and Six-
Peaks problems. The Four peaks problem is introduced in [2]. Binary vectors
are assigned scores depending on the number of consecutive zeros beginning at
position x1, and consecutive ones ending a position xd. If −−→zero is the number of
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Figure 3: A comparison of five models on the Four-Peaks and Six-Peaks prob-
lems. In both cases, the candidate binary-vectors were of length 100 and the
ν = 10.

zeros beginning at x1, and ←−one is the of ones ending on xd, the score is

φ(x) = max(−−→zero,←−one) +

{
d, if −−→zero > ν ∧←−−ones > ν ,

0, otherwise,
(44)

where ν is a variable parameter. The Six Peaks is a generalization of the Four
Peaks problem and introduced by [4]. It is based on binary vectors and −−→zero and
←−one are defined as above, while −→one and ←−−zero are the the number of consecutive
ones beginning at position x1, and consecutive zeros ending a position xd. The
objective function is

φ(x) =max(−−→zero,←−one,−→one,←−−zero)

+


d, if −−→zero > ν ∧←−−ones > ν ,

d, if −−→ones > ν ∧←−−zeros > ν ,

0, otherwise.

(45)

The role of the probability model in these problems can be illustrated by
comparing multivariate Bernoulli models with mixtures of multivariate Bernoulli
models. A mixture of K multivariate Bernoulli distributions is

P(x
∣∣θ) =

K∑
k=1

πk

d∏
i=1

pxi

ki (1−pki)
(1−xi) . (46)

where {pk1, pk2, . . . , pki, . . . , pkd} is a set multivariate Bernoulli parameters, i.e.
pki ∈ [0, 1], and π = [π1, π2, . . . , πk, . . . , πK ] is a multinomial distribution speci-
fying the probability of each of the K distributions. Using this model the com-
putation of (21) can be performed again using an EM algorithm for (weighted)
maximum likelihood estimation.
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In comparison to the Four-Peak problem, the Six-Peak problem has symmet-
rically opposite maxima, i.e. both −−→zero > ν ∧←−−ones > ν and −−→ones > ν ∧←−−zeros > ν
have high value. A single multivariate Bernoulli model will be caught between
these two maxima. By contrast, the Four-Peak problem does not have these dia-
metrically opposite maxima. A single multivariate model will perform relatively
better on this problem.

This is seen in Figure 3 (a) and (b), where we show the average performance
of 5 models over 10 separate runs. The models in each case are a single multi-
variate Bernoulli model, a k = 3 mixture model, and a k = 5 mixture model. For
purposes of comparison, we also include a stochastic hill-climber (mutation rate
of .01) and a single crossover Genetic algorithm (also with a mutation rate of
.01). In the Six-Peaks problem, the mixture models (k = 3 and k = 5) perform
well, while the single multivariate model is on average unable to attain high
rates of fitness. By contrast, in the Four-Peak problem the single multivariate
model performs almost as well as the mixture models. These results seem to
imply that problems which can be characterized as multi-modal are difficult for
methods that assume unimodal probability distributions.

5 Conclusion

The purpose of this paper is threefold. First, we explicitly describe optimization
in probabilistic terms as maximizing the functional

E(θ) = log
N∑

i=1

φ(xi)P(xi

∣∣θ),

and derive a iterative method for this problem that is based upon the gener-
alized EM algorithm, [10, 6]. Second, we show that many population based
optimization procedures implicitly implement this procedure. These methods
include GAs, SHCs, PBIL, CE, MIMIC and BOA. Third, we aim to use this
perspective to provide insight into the behavior of population-based stochastic
optimization methods. For example, we show that one of the important factors
that differentiate between population-based search methods is the probability
model that they (explicitly or implicitly) assume. We demonstrated this in Sec-
tion 3. In the final section, we demonstrated that population-based method that
use ill-suited probability models can perform poorly. For example, we showed
how population-based methods that assume unimodal distributions can perform
poorly on multi-modal optimization problems.
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