Bayesian Policy Gradient Algorithms

Mohammad Ghavamzadeh Yaakov Engel
Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6E 4Y8

{nmgh, yaki }@s. ual berta. ca

Abstract

Policy gradient methods are reinforcement learning allgors that adapt a pa-
rameterized policy by following a performance gradientreate. Conventional

policy gradient methods use Monte-Carlo techniques tonedé this gradient, and
improve the policy by adjusting the parameters in the dioaatf that gradient es-

timate. Since Monte Carlo methods tend to have high variamta@ge number of

samples is required to attain accurate estimates, regudtisiow convergence. In
this paper, we propose a Bayesian framework that modelsaiieygradient as a

Gaussian process. This reduces the number of samples neealgdin accurate

gradient estimates. Moreover, estimates of the naturdigmaand a measure of
the uncertainty in the gradient estimates are providedike éixtra cost.

1 Introduction

Policy Gradient (PG) methods are Reinforcement Learning éRyorithms that maintain a param-
eterized action-selection policy and update the policyapeaters by moving them in the direction
of an estimate of the gradient of a performance measurey Eraimples of PG algorithms are the
class of REINFORCE algorithms of Williams [2] which are silile for solving problems in which
the goal is to optimize the average reward. Subsequent gk (3, 4]) extended these algorithms
to the cases of infinite-horizon Markov decision procesd3Ks) and partially observable MDPs
(POMDPs), and provided much needed theoretical analysisveMer, both the theoretical results
and empirical evaluations have highlighted a major shontog of these algorithms, namely, the
high variance of the gradient estimates. This problem mayawoed to the fact that in most interest-
ing cases, the time-average of the observed rewards is avhiggnce (although unbiased) estimator
of the true average reward, resulting in the sample-inefiicy of these algorithms.

One solution proposed for this problem was to use a smal] érealler than 1) discount factor in
these algorithms [3, 4], however, this creates anotherlpnoby introducing bias into the gradient
estimates. Another solution, which does not involve biggime gradient estimate, is to subtract
a reinforcement baseline from the average reward estimatteei updates of PG algorithms (e.g.,
[1, 2]). Another approach for speeding-up policy gradidgbathms was recently proposed in [5]
and extended in [6, 7]. The idea is to replace the policy-gratcestimate with an estimate of the
so-callednatural policy-gradient. This is motivated by the requirement thahange in the way the
policy is parametrized should not influence the result ofgbkcy update. In terms of the policy
update rule, the move to a natural-gradient rule amounisgautly transforming the gradient using
the inverse Fisher information matrix of the policy.

However, both conventional and natural policy gradienthrods rely on Monte-Carlo (MC) tech-
nigues to estimate the gradient of the performance measlmete-Carlo estimation is a frequentist
procedure, and as such violates ttkelihood principle [8].1 Moreover, although MC estimates are
unbiased, they tend to produce high variance estimatedtesnatively, require excessive sample
sizes (see [9] for a discussion).

1The likelihood principle states that in a parametric stiaéiémodel, all the information about a data sample
that is required for inferring the model parameters is doethin the likelihood function of that sample.

In [10] a Bayesian alternative to MC estimation is proposéthe idea is to model integrals of
the form [f(z)p(z)dz as Gaussian Processes (GPs). This is done by treating theefirss in

the integrand as sandom function, the randomness of which reflects our subjective unceytaint
concerning its true identity. This allows us to incorporate prior knowledge ory into its prior
distribution. Observing (possibly noisy) samplesfodit a set of point$z, zs, ..., za) allows us

to employ Bayes' rule to compute a posterior distributiorf ofonditioned on these samples. This,
in turn, induces a posterior distribution over the valuehs integral. In this paper, we propose a
Bayesian framework for policy gradient, by modeling thedigat as a GP. This reduces the number
of samples needed to obtain accurate gradient estimatagoVvir, estimates of the natural gradient
and the gradient covariance are provided at little extr& cos

2 Reinforcement Learning and Policy Gradient Methods

Reinforcement Learning (RL) [11, 12] is a class of learngngblems in which an agent interacts
with an unfamiliar, dynamic and stochastic environmend, @hose goal is to maximize some mea-
sure of its long-term performance. This interaction is @mionally modeled as a MDP. L&t(S)

be the set of probability distributions on (Borel) subséta setS. A MDP is a tuple(x, A, ¢, P, Py)
whereXx and.A are the state and action spaces, respectiyély; =) € P(R) is the probability dis-
tribution over rewardsP(-|a, z) € P(X) is the transition probability distribution; (we assumettha
andgq are stationary); ang,(-) € P(X) is the initial state distribution. We denote the random-vari
able distributed according tg-|a, z) asr(z,a). In addition, we need to specify the rule according
to which the agent selects actions at each possible stat@as®ne that this rule does not depend
explicitly on time. Astationary policy u(-|z) € P(A) is a probability distribution over actions, con-
ditioned on the current state. The MDP controlled by theqyali induces a Markov chain over
state-action pairs. We generically denoteby (zo, ao, 1, a1, ..., zr-1,ar—1,z7) @ path generated
by this Markov chain. The probability of such a path is givgn b

T-1

Pr(é|p) = Po(wo) [[mlaclz) P(zisalee, ar). (1)

t=0

We denote byr(¢) = 3/, 7'r(z, a¢) the (possibly discounted, € [0, 1]) cumulative return of the
pathé. R(€) is arandom variable both because the gatha random variable, and because even for
a given path, each of the rewards sampled in it may be stach@sie expected value at(¢) for a
given ¢ is denoted byR(¢). Finally, let us define thexpected return

() = BR©) = [R Priclu)de @

Gradient-based approaches to policy search in RL havetigceneived much attention as a means
to sidetrack problems of partial observability and of ppliscillations and even divergence encoun-
tered in value-function based methods (see [11], Sec. 8rtd5.5.3). In policy gradient (PG) meth-
ods, we define a class of smoothly parameterized stochadinigs { .i(-|z; 0), 2 € X,0 € O}, es-
timate the gradient of the expected return (2) with respethé policy paramete®from observed
system trajectories, and then improve the policy by adjgdiie parameters in the direction of the
gradient [2, 3, 4]. The gradient of the expected rety(i®) = n(u(-|-; 0)) is given by?

vi0) = [R ool prici o). @)

wherePr(¢;0) = Pr(¢|u(-|-;0)). The quantityvplj(ré,fé‘)” = VlogPr(¢; 0) is known as thescore
function or likelihood ratio. Since the initial state distributioR; and the transition distributiof®

are independent of the policy paramet@ysve can write the score of a paghusing Eq. 1 as

_ VPr(§0) _ ~ Vilazs 0
“O=Pe8) = 2 (e 6)

y T
= ZVIOgH(at|xt§9)- 4)
t=0

t=0

>Throughout the paper, we use the notafioio denoteVy — the gradient w.r.t. the policy parameters.

Previous work on policy gradient methods used classicaltBl@arlo to estimate the gradient in
Eqg. 3. These methods generate i.i.d. sample paths., £y, according toPr(&; 0), and estimate
the gradien¥,(0) using the MC estimator

T;—1

M
1
Vo0 ZR £)VlogPr(&;0) = 57> R(&) D Viogu(avilzes: 6). 5)
i=1

t=0

3 Bayesian Quadrature

Bayesian quadrature (BQ) [10] is a Bayesian method for etialg an integral using samples of its
integrand. We consider the problem of evaluating the iatliegr

p= [r@pa)ds (6)
If p(z) is a probability density function, this becomes the probtéravaluating the expected value
of f(x). In MC estimation of such expectations samples, z2, ..., z)r) are drawn fromp(x),

and the integral is estimated as/c = ; Zl L f(zi). puc is an unbiased estimate pf with
variance that diminishes to zero & — oo. However, as O’Hagan points out, MC estimation is
fundamentally unsound, as it violates the likelihood pipies and moreover, does not make full use
of the data at hand [9] .

The alternative proposed in [10] is based on the followirsgoming: In the Bayesian approagi,

is random simply because it is numerically unknown. We aegetfore uncertain about the value
of f(z) until we actually evaluate it. In fact, even then, our uraiaty is not always completely
removed, since measured sampleg @f) may be corrupted by noise. Modelirfgas a Gaussian
process (GP) means that our uncertainty is completely ateddor by specifying a Normal prior
distribution over functions. This prior distribution isesgified by its mean and covariance, and is
denoted by (-) ~ N {fo(-), k(-,-)}. Thisis shorthand for the statement tliad a GP with prior mean
E(f(z)) = fo(x) and covarianc&®ov(f(z), f(z')) = k(z,z"), respectively. The choice of kernel
functionk allows us to incorporate prior knowledge on the smoothnesgasties of the integrand
into the estimation procedure. When we are provided withtassamplesDys = {(xi,v:) 144,
wherey; is a (possibly noisy) sample gfz;), we apply Bayes' rule to condition the prior on these
sampled values. If the measurement noise is normally biiged, the result is a Normal posterior
distribution of f|D,,. The expressions for the posterior mean and covariancearéssd:

E(f(x)[Da) = fo(x) + kn(x) ' Cu(ya — fo), ™
Cov(f(x), f(z")|Du) = k(z, ') — kn(x) ' Crrknr ().
Here and in the sequel, we make use of the definitions:

fo= o)., folwa))" yar =W, ynn)
ka(z) = (k(z1,), ke, 2) ", [Kulig = k(@sz;) , Cuv=(Ku+3u) ",
and[X.];,; is the measurement noise covariance betweerntthandjth samples. Typically, it

is assumed that the measurement noise is i.i.d., in whioh ¥as = ¢2I, wherecs? is the noise
variance and is the identity matrix.

Since integration is a linear operation, the posteriorritigtion of the integral in Eqg. 6 is also
Gaussian, and the posterior moments are given by [10]

E(p|DM):/E(f(CC)|DM) (x)dx , Var(p|Dun) / Cov(f)| Da)p(x)p(z)dzdz’. (8)
Substituting Eq. 7 into Eq. 8, we get
E(p|Dr) = po+ 20 Cri(yn — Fo) : Var(p|Du) = 20 — 22 Cnrznr, (9)
where we made use of the definitions:
po = / fo(@)p(z)dz , zm = / ky (z)p(z)de , 20 = // (z,2") (z)dzdz’. (10)

Note thatpg andz, are the prior mean and variancemfrespectively.

Modd 1 Modd 2
Known part p(&;0) = Pr(&;0) p(§;0) = VPr(¢;0)
Uncertain part f(&0) = R(§)ViogPr(¢;0) (&) = R(¢)
Measurement y(§) = R(£§)Vlog Pr(¢; 0) y(§) = R(¢)
Prior mean off E(f(&60))=0 E(f()=0
Prior cov. of f Cov(f(&;0), f(£50)) = k(&) | Cov(f(§),f(E)) =k(EE)
E(Vng(0)Dm) = YrCrzu ZnCrmy,y
Cov(Vne(0)|[Dr) = | (20 — zLCMzM)I Zo—ZuCuZy,
Kernel function k(&,6) = (1+u(&) G ulg))” | k(& &) = ul&) G ulg)
zZMm (zam)i =14+ u(&) TG u(&) Zy =Uwm
20 zo=1+n Zo:G—UMCMUL

Table 1:Summary of the Bayesian policy gradient Models 1 and 2.

In order to prevent the problem from “degenerating into iitdimegress”, as phrased by O’Hagan
[10], we should choose the functiopsk, and f, so as to allow us to solve the integrals in Eq. 10
analytically. For instance, O’'Hagan provides the analyesigiired for the case where the integrands
in Eq. 10 are products of multivariate Gaussians and polyalsnreferred to as Bayes-Hermite
guadrature. One of the contributions of the present papir [goviding analogous analysis for
kernel functions that are based on tsher kernel [13, 14]. It is important to note that in MC
estimation, samples must be drawn from the distributicr), whereas in the Bayesian approach,
samples may be drawn from arbitrary distributions. Thistafé us with flexibility in the choice of
sample points, allowing us, for instance to actively designsample$z1, zo, ...,z).

4 Bayesian Policy Gradient

In this section, we use the Bayesian quadrature to estirhatgradient of the expected return with
respect to the policy parameters, and propBagesian policy gradient (BPG) algorithms. In the
frequentist approach to policy gradient our performancasuee wag)(0) from Eq. 2, which is the
result of averaging the cumulative retuR{¢) over all possible path&and all possible returns accu-
mulated in each path. In the Bayesian approach we have aticaddisource of randomness, which
is our subjective Bayesian uncertainty concerning thegssgenerating the cumulative returns. Let
us denote

0) = [R(€)Pr(e: o). (11)

np(0) is a random variable both because of the noisB (&) and the Bayesian uncertainty. Under
the quadratic loss, our Bayesian performance measiE&ijs(0)|D,s). Since we are interested in
optimizing performance rather than evaluating it, we waalther evaluate the posterior distribution
of the gradient of)5(0). For the mean we have

VE (15(0)[Dar) = E (V5(0) Do) = (/ R(¢ VPT“ Pr(s;0>d£|DM). (12)

Consequently, in BPG we cast the problem of estlmatmg tlaehgnt of the expected return in
the form of Eqg. 6. As described in Sec. 3, we partition thegraed into two partsf(¢; 8) and
p(&;0). We will place the GP prior ovef and assume thatis known. We will then proceed by
calculating the posterior moments of the gradients (€) conditioned on the observed data. Next,
we investigate two different ways of partitioning the imagd in Eq. 12, resulting in two distinct
Bayesian models. Table 1 summarizes the two models we usis inark. Our choice of Fisher-type
kernels was motivated by the notion that a good representsliiould depend on the data generating
process (see [13, 14] for a thorough discussion). Our paatichoices of linear and quadratic Fisher
kernels were guided by the requirement that the posterionemts of the gradient be analytically
tractable. In Table 1 we made use of the following definitios,, = (f(£1;9),. .., f(&rm; 6)) ~
NO,Kn), Y = (y(&),- - y(6n)) ~ N0, Knr +0°1), Unr = [u(&) , u(€) -, w(énm)],

Zy = [VPr(&0)kn(€)dé, and Zo = [[k(€,€)V Pr(&0)V Pr(¢';0) " dede’. Moreover,n is the
number of policy parameters, al=E (u(¢)u(¢) ") is the Fisher information matrix.

We can now use Models 1 and 2 to define algorithms for evalyakia gradient of the expected
return with respect to the policy parameters. The pseudie-¢or these algorithms is shown in
Alg. 1. The generic algorithm (for either model) takes a $@indicy parameter® and a sample size

M as input, and returns an estimate of the posterior mometitegfradient of the expected return.

Algorithm 1: A Bayesian Policy Gradient Evaluation Algorithm

: BPG_Eval(0, M) /I policy parameter® € R™, sample size\l > 0//
: SetG=G(0) , Dy=0
cfori=1toM do
Sample a path; using the policy.(8)
D; =Di-1U {&}
Computeu(&i) = 755" Vlog pu(ax|se; 0)
R(&) = 31y r(se, ar)
UpdateK ; using K ;1 and¢;
y(&:) = R(&)u(&) (Model 1) or y(&) = R(&) (Model 2)
(zm)i =1+u(&) TG 'u(&) (Modell) or Zu(:,i) =u(&) (Model 2)
10: end for
11: Cu = (Km +0°I)7!
12: Compute the posterior mean and covariance:
E(VT]B(GHDA{) =Y nuCuzym y COV(VT]B(OHDA{) = (Zo — Z]—L/C]V[ZJM)I (Model l) or
E(VT]B(GHDA{) = Z]V[CJM’y]M y COV(VT]B(OHDA{) = Zo — Z]V[C]V[ZX{ (Model 2)

13: return E(V’I]B(ON'D]V[) , COV(VT]B(GHDA{)

PN o aRrONE

©

The kernel functions used in Models 1 and 2 are both basededRisher information matri& (9).
Consequently, every time we update the policy parametensegd to recomputé&r. In Alg. 1 we
assume thatr is known, however, in most practical situations this wilt be the case. Let us briefly
outline two possible approaches for estimating the Figiferination matrix.

MC Estimation: At each stepj, our BPG algorithm generatédd sample paths using the current
policy parameterd; in order to estimate the gradieit)z(6,). We can use these generated sample
paths to estimate the Fisher information mat@x@,) by replacing the expectation i& with em-
pirical averaging a&arc (8;) = Z+1T1 S M ST Viog p(ad]xe; 8,)V log p(aclze; 65) T
Model-Based Policy Gradient: The Fisher information matrix depends on the probabilisgrithu-
tion over paths. This distribution is a product of two fastane corresponding to the current policy,
and the other corresponding to the MDP dynaniicésee Eq. 1). Thus, if the MDP dynamics are
known, the Fisher information matrix can be evaluated io#-| We can model the MDP dynamics
using some parameterized model, and estimate the modehptras using maximum likelihood or
Bayesian methods. This would be a model-based approacHity geadient, which would allow
us to transfer information between different policies.

Alg. 1 can be made significantly more efficient, both in timel amemory, by sparsifying the so-
lution. Such sparsification may be performed incrementatg helps to numerically stabilize the
algorithm when the kernel matrix is singular, or nearly scer¢dwe use an on-line sparsification
method from [15] to selectively add a new observed path ta afsictionary pathsD,,, which are
used as a basis for approximating the full solution. Lackpafcge prevents us from discussing this
method in further detail (see Chapter 2 in [15] for a thorosgécification).

The Bayesian policy gradient (BPG) algorithm is descrilvedlg. 2. This algorithm starts with an
initial vector of policy parameter8, and updates the parameters in the direction of the posterior
mean of the gradient of the expected return, computed by RlgThis is repeatedv times, or
alternatively, until the gradient estimate is nearly zero.

Algorithm 2 : A Bayesian Policy Gradient Algorithm

1: BPG(0o,a, N, M) /l'initial policy parameter$, learning rategaj);.\’:’ol, number of policy updates
N > 0, BPG_Eval sample size\l > 0 //

:forj=0toN —1 do
AO; = E (Vng(0;)|Dr) from BPG_Eval (05, M)
0,41 = 0;+a;A0; (regulargradient) or@;11 = 0;+a;G*(0;)A8; (natural gradient)

end for

D return Oy

QAR WN

5 Experimental Results

In this section, we compare the BQ and MC gradient estimatcasontinuous-action bandit prob-
lem and a continuous state and action linear quadraticaggol(LQR) problem. We also evaluate

the performance of the BPG algorithm (Alg. 2) on the LQR, amhpare it with a MC-based policy
gradient (MCPG) algorithm.

5.1 A Bandit Problem

The goal of this simple example is to compare the BQ and MQ@nesés of the gradient (for a fixed
set of policy parameters) using the same samples. Our sibguldit problem has a single state
andA = R. Thus, each path; consists of a single actio®;,. The policy, and therefore also the
distribution over paths is given iy~ N(6; = 0,63 = 1). The score function of the path= a and
the Fisher information matrix are given by¢) = [a,a? — 1] " andG = diag(1, 2), respectively.

Table 2 shows the exact gradient of the expected return and@ and BQ estimates (using
and 100 samples) for two versions of the simple bandit problem spoading to two different
deterministic reward functionga) = a andr(a) = a®. The average ovel0* runs of the MC and
BQ estimates and their standard deviations are reportealite 2. The true gradient is analytically
tractable and is reported as “Exact” in Table 2 for reference

Exact MC (10) BQ (10) MC (100) BQ (100)
1 0.9950 + 0.438 0.9856 & 0.050 1.0004 + 0.140 1.000 =+ 0.000001
0 —0.0011 + 0.977 0.0006 + 0.060 0.0040 £ 0.317 0.000 = 0.000004

(a) = a? 0 0.0136 £ 1.246 0.0010 £ 0.082 0.0051 £ 0.390 0.000 £ 0.000003
ra)=a 2 2.0336 £ 2.831 1.9250 + 0.226 1.9869 + 0.857 2.000 + 0.000011

Table 2:The true gradient of the expected return and its MC and B@aestis for two bandit problems.

As shown in Table 2, the BQ estimate has much lower variararettie MC estimate for both small
and large sample sizes. The BQ estimate also has a lowerhgiagtite MC estimate for the large
sample size{/ = 100), and almost the same bias for the small sample size<(10).

5.2 A Linear Quadratic Regulator

In this section, we consider the following linear system et the goal is to minimize the expected
return over20 steps. Thus, it is an episodic problem with paths of ler2gth

System Policy
Initial State:zo ~ A(0.3,0.001) Actions: a; ~ pu(-|xs;0) = N (Az, 0?)
Rewardsr; = z7 + 0.1a? Parametersd = (A, o) '

Transitions:zy 11 = x4 + a; + na; ny ~ N(0,0.01)

We first compare the BQ and MC estimates of the gradient of tpeaed return for the policy
induced by the parameteks= —0.2 ando = 1. We use several different sample sizes (number of
paths used for gradient estimatial) = 55 , j = 1,..., 20 for the BQ and MC estimates. For each
sample size, we compute both the MC and BQ estimatégimes, using the same samples. The
true gradient is estimated using MC with” sample paths for comparison purposes.

Figure 1 shows the mean squared error (MSE) (first columm) tleé mean absolute angular error
(second column) of the MC and BQ estimates of the gradienséweral different sample sizes.
The absolute angular error is the absolute value of the dmgfl@een the true gradient and the
estimated gradient. In this figure, the BQ gradient estimate calculated using Model 1 without
sparsification. With a good choice of sparsification thrédhee can attain almost identical results
much faster and more efficiently with sparsification. Thesilts are not shown here due to space
limitations. To give an intuition concerning the speed amal efficiency attained by sparsification,
we should mention that the dimension of the feature spacéhokernel used in Model 1 i§
(Proposition 9.2 in [14]). Therefore, we deal with a kerneltrix of size6 with sparsification versus

a kernel matrix of sizéd/ = 55, j = 1,...,20 without sparsification.

We ran another set of experiments, in which we add i.i.d. 6iansoise to the rewards; = 27+
0.1a? + n, ; n. ~ N(0,02 = 0.1). In Model 2, we can model this by the measurement noise
covariance matri® = T'o2I, whereT = 20 is the path length. Since each rewards a Gaussian
random variable with variance?, the returnR(¢) = Zf:_ol r, Will also be a Gaussian random
variable with variancd'o2. The results are presented in the third and fourth columri&gfre 1.
These experiments indicate that the BQ gradient estimatdolger variance than its MC counter-
part. In fact, whereas the performance of the MC estimateags asﬁl—l, the performance of the
BQ estimate improves at a higher rate.

N
N

10
---MC ---MC
\;m‘ \;m‘

10% ©

[
o]

10° 10

- ™MC
—BQ

10

Mean Squared Error
B
e}

Mean Squared Error

Mean Absolute Angular Error (deg)
8

Mean Absolute Angular Error (deg)
B
o

10

> 10° 10° 10°
O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100
Number of Paths Number of Paths Number of Paths Number of Paths

Figure 1:Results for the LQR problem using Model 1 (left) and Modeligl{t), without sparsification. The
Model 2 results are for a LQR problem, in which the rewardscareupted by i.i.d. Gaussian noise. For each
algorithm, we show the MSE (left) and the mean absolute amgrtor (right), as functions of the number of
sample pathd/. Note that the errors are plotted on a logarithmic scalergdlllts are averages ove)* runs.

Next, we use BPG to optimize the policy parameters in the L@éblem. Figure 2 shows the
performance of the BPG algorithm with the regular (BPG) amal natural (BPNG) gradient es-
timates, versus a MC-based policy gradient (MCPG) algartfor the sample sizes (number of
sample paths used for estimating the gradient of a polidy} 5, 10,20, and40. We use Alg. 2
with the number of updates set 2 = 100, and Model 1 for the BPG and BPNG methods. Since
Alg. 2 computes the Fisher information matrix for each sqialfcy parameters, an estimate of the
natural gradient is provided at little extra cost at each.s¥éhe returns obtained by these methods
are averaged ovei0* runs for sample sizes and 10, and overl0® runs for sample size20 and

40. The policy parameters are initialized randomly at each Hanorder to ensure that the learn-
ing algorithms cannot exceed an acceptable parameter,rdrggpolicy parameters are defined as
A=-1.999+1.998/(1+ ¢"*) ando = 0.001 + 1/(1 + ¢>). The optimal solution is* ~ —0.92
andc™® = 0.001 (ng(A*,0*) = 0.1003) corresponding te;; ~ —0.16 andv — oo.

N MC " MC " MC 2 b MC
o0k ---BPG 1o --- BPG 1o ---BPG 1o ---BPG
= ---BPNG = ---BPNG = ---BPNG = ---BPNG
= —Optimal = B —Optimal = —Optimal = —Optimal
= = : = = H
& == ! =3 ! & |
= = (= i = ft
8 k] v 8 i 8 L
=4 =1 =] | =] x
8 8 8 | 2 W
g =8 s =8
B | el TTeeeel fin] | h fin] [N fin] 3
o 4 o | e CR I L T
© 10 © 10 \ © 10 —— @,10° 1 -
& & - 2 &
T T T T
L L TR L L
= = B T s = B
O 20 40 60 80 _100 O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100
Number Sf Updates (Sample Size = 5) Number of Updates (Sample Size = 10) Number of Updates (Sample Size = 20) Number of Updates (Sample Size = 40)

Figure 2: A comparison of the average expected returns of BPG usingae(BPG) and natural (BPNG)
gradient estimates, with the average expected return ol@RG algorithm for sample sizés 10, 20, and40.

Figure 2 shows that MCPG performs better than the BPG algurifor “very” small sam-
ple size (4 = 5), whereas for larger samples BPG dominates MCPG. This phenon is
also reported in [16]. We use two different learning rates tfee two components of the
gradient. For a fixed sample size, each method starts withniial ilearning rate, and de-
creases it according to the schedule = «¢(20/(20 + j)). Table 3 summarizes the best
initial learning rates for each algorithm. The selectedrrieey rates for BPNG are signif-
icantly larger than those for BPG and MCPG, which explainsy vVBPNG initially learns
faster than BPG and MCPG, but contrary to our expectationenteally performs worse.

r M =5 M=10 | M=20 | M =40

MCPG | 0.01,0.05| 0.05,0.10] 0.05,0.10| 0.10, 0.15
BPG | 0.01,0.03| 0.07,0.10| 0.15, 0.20| 0.10, 0.30
BPNG | 0.03,0.50| 0.09, 0.30| 0.45,0.90| 0.80, 0.90

So far we have assumed that the Fish
information matrix is known. In the
next experiment, we estimate it us
ing both MC and maximum likelihood
(ML) methods as described in Section Figure 3:initial learning rates used by the PG algorithms.
4. In the ML estimation, we assume

that the transition probability function iB(z¢t1|z:, ar) = N(Bize + Bea: + B3, 83), and then es-
timate its parameters by observing state transitions. rEigulshows that the BPG algorithm when
the Fisher information matrix is estimated using MC (BPG)\@s still a better performance than
MCPG, and outperforms the BPG algorithm in which the Fishéormation matrix is estimated
using ML (BPG-ML). Moreover, as we increase the sample stggerformance converges to the
performance of the BPG algorithm in which the Fisher infatioramatrix is known (BPG).

[}
o
[}

R
o
R
o]

1
I
o]

mMc McC mMcC

BPG BPG BPG

BPG—-ML = BPG—-ML = BPG—-ML
s —0.2 BPG-MC]| =1 —0-2 BPG-MC]| =1 0.2 BPG-MC]|
E 10 o —— Optimal g 10 —— Optimal E 10 —— Optimal
B X B B
8 107°° 8 107°° 8 107° B
s ~ S S
= ta = =
[n]]]
=3 =3 T S T
S 109" S 109" TTmeeeees £ 10 T ——— —
) T e}
< 2 <
< = <

107°° 107°° 107°°
100 0 100 O 100

o 20 40 60 80 o 20 40 60 8 o 20 40 60 8!
Number of Updates (Sample Size =10) Number of Updates (Sample Size = 20) Number of Updates (Sample Size =40)

Figure 4: A comparison of the average return of BPG when the Fisherrimdtion matrix is known (BPG),
and when it is estimated using MC (BPG-MC) and ML (BPG-ML) hwts, for sample sizek), 20, and40
(from left to right). The average return of the MCPG algaritfs also provided for comparison.

6 Discussion

In this paper we proposed an alternative approach to coiovethfrequentist policy gradient esti-
mation procedures, which is based on the Bayesian view. [@aritnms use GPs to define a prior
distribution over the gradient of the expected return, asdgute the posterior, conditioned on the
observed data. The experimental results are encouragihgiebconjecture that even higher gains
may be attained using this approach. This calls for addititreoretical and empirical work.

Although the proposed policy updating algorithm (Alg. 2gs®nly the posterior mean of the gradi-
entin its updates, we hope that more elaborate algorithmbeaevised that would make judicious
use of the covariance information provided by the gradistitration algorithm (Alg. 1). Two ob-
vious possibilities are: 1) risk-aware selection of the atpdstep-size and direction, and 2) using
the variance in a termination condition for Alg. 1. Othereirgsting directions include 1) investi-
gating other possible partitions of the integrand in theresgion forVn(0) into a GP termf and

a known termp, 2) using other types of kernel functions, such as sequeeaels, 3) combining
our approach with MDP model estimation, to allow transfeleaining between different policies,
4) investigating methods for learning the Fisher informatmnatrix, 5) extending the Bayesian ap-
proach to Actor-Critic type of algorithms, possibly by comibg BPG with the Gaussian process
temporal difference (GPTD) algorithms of [15].

References
[1] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Pyligadient methods for reinforcement learning
with function approximation. IfProceedings of NIPS 12, pages 1057-1063, 2000.

[2] R. Williams. Simple statistical gradient-followinggudrithms for connectionist reinforcement learning.
Machine Learning, 8:229-256, 1992.

[3] P. Marbach.Smulated-Based Methods for Markov Decision Processes. PhD thesis, MIT, 1998.
[4] J. Baxter and P. Bartlett. Infinite-horizon policy-grewt estimationJAIR, 15:319-350, 2001.
[5] S. Kakade. A natural policy gradient. Rroceedings of NIPS 14, 2002.

[6] J.Bagnell and J. Schneider. Covariant policy searchrrbateedings of the 18th 1JCAI, 2003.

[7] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcemeanning for humanoid robotics. roceedings
of the Third | EEE-RAS International Conference on Humanoid Robots, 2003.

[8] J.Berger and R. Wolperfhe Likelihood Principle. Inst. of Mathematical Statistics, Hayward, CA, 1984.
[9] A. O’Hagan. Monte Carlo is fundamentally unsourithe Satistician, 36:247—249, 1987.

[10] A. O’'Hagan. Bayes-Hermite quadratudaurnal of Satistical Planning and Inference, 29, 1991.

[11] D. Bertsekas and J. Tsitsiklisleuro-Dynamic Programming. Athena Scientific, 1996.

[12] R. Sutton and A. BartoAn Introduction to Reinforcement Learning. MIT Press, 1998.

[13] T. Jaakkola and D. Haussler. Exploiting generative et®ih discriminative classifiers. IRroceedings
of NIPS11. MIT Press, 1998.

[14] J. Shawe-Taylor and N. Cristianiriernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.

[15] Y. Engel. Algorithms and Representations for Reinforcement Learning. PhD thesis, The Hebrew Univer-
sity of Jerusalem, Israel, 2005.

[16] C. Rasmussen and Z. Ghahramani. Bayesian Monte CarRroteedings of NIPS15. MIT Press, 2003.

