
Extended Abstract

Probabilistic inference for solving structured MDPs
and POMDPs

Marc Toussaint
School of Informatics, University of Edinburgh,

5 Forrest Hill, Edinburgh EH1 2QL, Scotland, UK

Inference on structured domains has made considerable advances in recent years: Varia-
tional inference has been proposed as a basic methods to decompose the inference process
(as on factored HMMs, Ghahramani & Jordan 1995), message-passing algorithms (such as
loopy belief propagation, expectation propagation, or exact inference via the Junction Tree
Algorithm, Minka 2001) can efficiently handle a very broad range of structured models.
Extensions of particle filters allow for more versatile belief representations in continuous
domains (Klaas et al. 2006), and interesting techniques for efficient inference in relational
models are currently developed (Chavira et al. 2006).

To scale up to more realistic scenarios, planning (or model-based Reinforcement Learn-
ing) in stochastic environments equally needs to cope with structured descriptions of the
environment, e.g., factored, hierarchical, and mixed (continuous/discrete) state represen-
tations. Approaches here include work on Factored Markov Decision Processes (Boutilier
et al. 1995; Koller & Parr 1999; Guestrin et al. 2003; Kveton & Hauskrecht 2005), abstrac-
tions (Hauskrecht et al. 1998), and relational models of the environment (Zettlemoyer et al.
2005).

From a complexity theoretic point of view, the equivalence between inference and planning
in well-known (see, e.g., Littman et al. 2001). However, we ask how such approaches to
structured probabilistic inference can exactly be transferred to the problem of planning, in
other words, whether one can translate the problem of planning directly to a problem of
inference. The aim is to connect both fields more strongly and eventually to apply efficient
methods of probabilistic inference directly in the realm of planning.

In my presentation I will report on our work on establishing equivalence between likeli-
hood maximization and maximization of the expected future discounted return and apply-
ing the new technique of inference planning on different domains.

Inference planning in MDPs. In (Toussaint & Storkey 2006) we developed the general
framework for inference planning in MDPs. One interesting aspect of this approach is to
consider the total time of a Dynamic Bayesian Network as a random variable (formally
this amounts to considering a mixture of finite-time DBNs) without compromising the effi-
ciency of inference. In this way we can cope with arbitrary and discounted rewards and ef-
ficiently compute posterior distributions over actions, states and the total time conditioned
on reward. An EM-algorithm is used for computing optimal policies.

An EM-algorithm for learning FSCs in POMDPs. In (Toussaint & Harmeling 2007) we
propose using inference planning on POMDPs. Here, an EM-algorithm is used to learn the
parameters of a Dynamic Bayesian Network model of the agent (which could be a finite
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state controller or any other structured control policy). The approach compares favorably
to gradient-based approaches and allows to consider more interesting (structured) internal
architectures of the agent than plain finite state controllers. For instance, for a specific
architecture we can learn suitable internal nodes that represent basic reactive behaviors
like aisle following in a maze.

Inference planning in robotic domains. In aiming to apply the new techniques on real
world problems we considered the problem of trajectory planning for a redundant robotic
system under collision constraints (Toussaint & Goerick 2007). We formulated a factor
graph representation of the problem and solved the inference problem using (loopy) be-
lief propagation. The approach proved efficient and is promising to extend to multiple
(factored) constraints and state variables. Current research tries to extend this technique
to planning sequences when multiple parallel controllers (motor primitives) are used to
generate complex movements.
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