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Autonomous mobile robots form an important research area due to their applicability in the real
world as domestic service robots. The autonomy of a robot strongly relies on its ability to extract in-
formation from the environment. A robot must also be aware of the current situation for an improved
interaction with humans or other robots. However, it is very difficult to achieve robotic autonomy in
a simple way. Robot tasks such as event detection, robot localization, plan execution, intent recog-
nition are examples of complex tasks that can not be easily solved by standard robotic approaches.
These tasks have to be performed using a limited number of sensors with low accuracy, as well as
with a restricted amount of computational power.

This work uses the recently emerged paradigm of Reservoir Computing (RC) [1] for grasping infor-
mation in several contexts of autonomous robotic tasks. RC is a new concept for efficient handling
of recurrent networks. With RC, the states of a random and high-dimensional dynamical system
made of a reservoir of recurrent nodes are mapped onto the desired output via a simple linear read-
out. Only the readout output layer is trained using standard linear regression techniques which are
simple and fast to implement (the recurrent part or reservoir is left fixed).

This work presents recent and ongoing research carried jointly by two research groups on several
robotic tasks. By using RC, we can solve the tasks without any model of the environment neither
of the task itself. We consider distinct levels of complexity for the robotic tasks: event detection,
localization, plan recognition and intent detection [2]. Event detection consists of detecting simple
occurrences local in time and space. It is not a trivial task: for instance, the events of ’passing
through door 1’ and ’passing through door 2’ can seem identical for a robot. It is very important that
we are able to distinguish between very similar events. The next step is towards robot localization,
in which we rather want to predict the current location of the robot based on the same kind of
sensory information. We consider three different granularities for the problem of robot localization:
coordinate detection in the cartesian map; location detection in a grid of small discrete areas; location
detection in a more realistic environment composed of rooms of distinct sizes. The following robotic
task corresponds to plan recognition. Particularly, we are interested in recognizing robot actions
during a navigation task such as: the robot is navigating to goal number 1 (which means a possible
robot action in a number of distinct goals). Finally, with intent detection we aim at predicting the
current intent of a human. It is different from action in that we consider here the case of disabled
user who can not always act according to his/her intents. For all four complexity levels, we use RC
as a black-box model for learning the task, where the inputs are only distance sensors. In addition,
in the context of robot localization, we further extend the experiments to map and path generation.
This is achieved by using the RC network in a generative setting, which makes possible to easily
extract the maps and the trajectories stored internally by the reservoir.

This work aims at achieving increasing degrees of robotic autonomy by using a simple and efficient
technique, namely, RC. We show that we can efficiently solve all aforementioned robotic tasks with
RC. Finally, we believe that RC can be applied to a wide range of robotic tasks, enhancing the
robot’s autonomy, its interaction with (disabled) humans or other cooperating robots.
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Plan Recognition and Execution with

Reservoir Computing

X. Dutoit, H. Van Brussel, M. Nuttin

Autonomous service robots are becoming a major research area in the field of
robotics. In this area, Human-Robot interaction (HRI) is of prime importance.
The quality of the HRI relies on the ability of the robot to implicitly understand
the user’s needs and its ability to assist her/him to perform these needs.

To achieve a better HRI, we consider the relatively recent technique of Reser-
voir Computing (RC), and more specifically of Echo State Networks (ESNs) [2],
to perform plan recognition and provide assistance to a human user. The key
idea of RC is very similar to a kernel methods, as it consists of projecting the
input data into a high-dimensional space, the reservoir, acting as a collection
of dynamical functions. The desired output can then be extracted from the
reservoir by a simple linear readout.

We restrict ourselves in the present work to the context of 2-D navigation.
The task is two-folds: first, an ESN is trained to perform plan recognition; then,
it is trained to perform plan execution.

For the recognition part, the goal is to estimate the desired position of a user
in a maze. We show that an ESN can correctly predict towards which corner
a mobile platform driven by the user is currently going with a high probability
[1].

For the execution part, the ESN is used to assist the driving and steer
the platform towards the desired position. Here again, the ESN can reach the
desired goal with a relatively good performance when considering the complexity
of the task.

Both results show that RC is able to perform complex tasks based only on
distance sensors data and with a simple example-based training method. An
intelligent system based on RC could thus be used to estimate the desired action
and then assist its execution. This would make possible to have a user-friendly
and efficient robotic assistant for everyday tasks.
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Reinforcement Learning with Multiple
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Many tasks in robotics can be described as a trajectory that the robot should follow. Unfortunately,
specifying the desired trajectory is often a non-trivial task. For example, when asked to describe the
trajectory that a helicopter should follow to perform an aerobatic flip, one would have to not only
(a) specify a complete trajectory in state space that intuitively corresponds to the aerobatic flip task,
but also (b) ensure that the state space trajectory is consistent with the helicopter’s dynamics. This
is a non-trivial task for systems with complicated dynamics.

In the apprenticeship learning setting, where an expert is available, one can instead have the ex-
pert demonstrate the desired trajectory. Unfortunately, this means that we must have an essentially
optimal expert available—since any learned controller, at best, will only be able to repeat the demon-
strated trajectory. Such a perfect demonstration may be hard, if not impossible, to acquire. However,
even suboptimal expert demonstrations often embody many ofthe desired qualities. Even stronger,
repeated expert demonstrations are often suboptimal in different ways, suggesting that a large num-
ber of suboptimal expert demonstrations could implicitly encode the optimal demonstration. In this
piece of work we propose an algorithm that approximately extracts this implicitly encoded optimal
demonstration from multiple suboptimal expert demonstrations. In doing so, the algorithm learns a
target trajectory that not only mimics the behavior of the expert, but can even be significantly better.

The problem of extracting the underlying ideal trajectory from a set of suboptimal trajectories is not
a matter of merely averaging the states observed at each time-step. A simple arithmetic average of
the states would result in a trajectory that does not obey thedynamic constraints of the model. Also,
in practice, each of the demonstrations will occur at different rates so that attempting to combine
states from the same time-step in each trajectory will not work properly.

Our algorithm uses a generative model that describes the expert demonstrations as noisy obser-
vations of the hidden, optimal target trajectory, with eachdemonstration possibly occurring at a
different rate. An EM algorithm is developed to infer the hidden target trajectory and the necessary
model parameters using a Kalman smoother and an efficient dynamic programming algorithm to
perform the E-step.

We also show how prior knowledge can be easily incorporated to further improve the quality of the
resulting “averaged” trajectory. For example, often only an approximate dynamics model is known,
and our algorithm can estimate an improvement to the generaldynamics model specific to the tra-
jectory being performed by incorporating data from multiple demonstrations. Our formulation also
allows us to take out known expert flaws. For example, for a helicopter performing in-place flips,
it is known that the helicopter can be centered around the same position over the entire sequence of
flips. Our model incorporates this prior knowledge, and factors out the position drift in the expert
demonstrations.

Our experimental results show that the resulting trajectories are not only good, feasible trajectories
that can be used in reality, but also that the resulting performance meets or exceeds that of the expert
(as evaluated by our expert helicopter pilot). The presented algorithm significantly extends the state
of the art in aerobatic helicopter flight ([1], [4]). Specifically, the learned trajectories resulted in
significantly better in-place flips and rolls than previously possible. The presented algorithm also
resulted in the first autonomous tic-tocs, a maneuver considered even more challenging than flips and
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rolls. Movies of the flight results can be found at the Stanford Autonomous Helicopter homepage:
http://www.cs.stanford.edu/groups/helicopter

Related work. In recent work on apprenticeship learning and inverse reinforcement learning
([2], [5], [7], [6]), the reward function is assumed be a linear combination of a known set of fea-
tures (rather than being defined by a trajectory), and the weighting of the features is then estimated
from expert demonstrations. Most similar to our work, Atkeson and Schaal [3] also estimate the de-
sired trajectory (for a pendulum swing-up task) from a demonstration. However, they learn from a
single demonstration only, which can significantly limit the performance obtained (or, equivalently,
increase the requirements on the expert) as discussed in previous paragraphs.
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CRF-Based Semantic and Metric Maps

Bertrand Douillard Dieter Fox Fabio Ramos

Map building is a fundamental task in robotics. This poster presents a methodology to
create metric maps augmented with object information [1]. The algorithm combines 2D laser
scans with vision data to produce maps in which each laser point is annotated by the type of
object it represents (see Fig.1).

Metric information is obtained by projecting the laser data into the global reference frame.
Symbolic information is obtained through probabilistic classification. The underlying model is
based on Conditional Random Fields (CRFs) where each scan is represented by a CRF chain
model, and each return is a node with categorical values. In this work, each label belongs to one
of the following seven classes: “car”, “trunk”, “foliage”, “people”, “wall”, “grass”, “other”. The
links in the chain network encode spatial correlations between neighbor returns.

CRF chains representing consecutive scans are linked across time in order to represent tempo-
ral correlations. Temporal links are instantiated based on the connections found by the Iterative
Closest Point algorithm and allow smoothing of classification results over time. The resulting
network from the connections of multiple CRF chains is the data structure defining the map.
The model allows both real time filtering and smoothing via loopy belief propagation.

The real-time analysis of the network also permits to identify moving objects. Moving objects
are characterized by a trace of associated points in the map which change over time (e.g. the
blue traces generated by the car in Fig. 1). This trace is identified and replaced by the estimated
object trajectory. Non-moving nodes connected by temporal links are merged together to limit
the growth in the number of nodes of the map.

The CRF model is trained with the Virtual Evidence Boosting (VEB) algorithm, which
enables the incorporation of high-dimensional, continuous features into CRF training [2]. We
also show how VEB can be used with partially labeled data, thereby significantly reducing the
burden of manual data annotation.

Figure 1: Left: One data frame consisting of a laser scan projected into a camera image. The colors of the
laser points indicate the inferred object label. The correspondence between colors and labels is indicated at the
bottom of the image. Right: Map generated from multiple scans. Each dot is a node of the underlying CRF
network. The dark blue dots correspond to the car moving through the scene.
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Learning to Associate with CRF-Matching

Fabio Ramos Dieter Fox

Data association remains a difficult and fundamental problem for many robotics tasks. It
is a crucial component in problems such as tracking, image registration, reconstruction, and
simultaneous localisation and mapping (SLAM).

Most existing data association algorithms consider only a limited set of features and require
substantial manual tuning to work in practice. For instance, in robotics SLAM, data associations
are typically determined solely based on the locations of landmarks, thereby ignoring important
appearance information. However, incorporating more complex information makes manual tun-
ing extremely cumbersome. Another limitation of existing data association algorithms is the fact
that they only provide a deterministic result on the association. This makes them less robust
and difficult to incorporate into probabilistic filtering approaches since no uncertainty on the
association is returned.

This poster introduces CRF-Matching; a general multi-sensor data association framework
that can be learnt from data [5]. CRF-Matching is a supervised probabilistic model able to
jointly reason about the association of points. This is obtained by overcoming the independence
assumption through the use of Conditional Random Fields (CRFs) [2]. CRFs are an extremely
flexible technique for integrating different features in the same probabilistic framework. Features
can be defined over different sensor modalities or designed to capture neighbourhood information.
The power of CRFs is enhanced through the possibility to use statistical measurements (such as
the likelihood of the data given the model) to learn a parametrisation of the model given some
training data. This process estimates weights for the features, thus quantifying the importance
of each feature for the particular task. Inference can be performed efficiently using Loopy Belief
Propagation once the model has been fully specified.

We demonstrate the capabilities of CRF-Matching in two data association tasks: laser scan
matching and image feature matching. In the first case data association between two laser scans
is accomplished by converting the individual measurements of one laser scan into hidden nodes
of a CRF. The states of each node range over all measurements in the other scan. The CRF
models arbitrary information about local appearance and shape of the scans. Consistency of
the association is achieved by connections between nodes in the CRF. CRF-Matching learns
model parameters discriminatively from sets of aligned laser scans. When applied to a new pair
of scans, maximum a posteriori estimation is used to determine the data associations, which
in turn specify the spatial transformation between the scans. Extensive experiments show that
CRF-Matching significantly outperforms ICP when matching laser range-scans with large spatial
offset. Furthermore, they show that our approach is able to reliably match scans without a priori
information about their spatial transformation, and to incorporate visual information so as to
further improve matching performance.

An extension of the previous approach can be employed for association of image features.
This is obtained through the use of the Delaunay triangulation [4] as the graph structure for
CRF-matching. The graph defines neighbour points by respecting interesting geometric con-
straints such as the empty circle property. This creates a graph that is not over-connected while
still encoding most of the geometric relationship between neighbour points. We demonstrate
how pairwise potential functions can be defined over edges to jointly reason about the associa-
tions. In addition to pairwise potential functions, local potential functions can also be defined to
directly incorporate sensor observations into the model. In our implementation, SIFT features
and descriptors [3] were used, although any image feature descriptor or detector could also be
employed. As opposed to the SIFT match procedure described in [3] where Euclidean distance
is used to measure the compatibility of matches, we show how a boosting classifier can be learnt
and integrated in CRF-Matching to capture non-linear relationships between image descriptors
to best match the features. We perform extensive experiments in challenging indoor and outdoor
datasets where images were obtained while the robot was in motion. Some of complexities in the
datasets include occlusion, different illumination conditions, blurring, translation and rotation
transformations. We show that CRF-Matching outperforms the commonly applied RANSAC
procedure [1] when there is a small set of detected features.
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Designing a vision-based autonomous robot that can navigate through complicated outdoor envi-
ronments is an extremely challenging problem that is far from solved. However, through use of a
self-supervised learning strategy and compact feature representations, we have developed a long-
range vision system that succeeds in accurately classifying obstacles and traversable areas that are
60 meters or more distant, bringing us closer to the goal of human-level autonomous driving. The
learning system is trained in realtime in rapidly changing terrain, and it must balance the need for
stability against the need for plasticity and adaptability. This dilemma is addressed by employing a
dynamic ensemble of experts.

Motivation: Shortcomings of Stereo Vision

The existing paradigm for vision-based mobile robots relies on hand-tuned heuristics: a stereo al-
gorithm produces a (x, y, z) point cloud and heuristics assign traversability costs to points based on
their proximity to a ground plane. However, stereo algorithms that run in realtime frequently produce
traversability costs that are short-range, sparse, and noisy. Our learning strategy uses these stereo la-
bels for online supervision to train a realtime classifier. The classifier then predicts the traversability
of all visible areas, from close-range to the horizon. For accurate recognition of ground and obstacle
categories, it is best to train on large, discriminative windows from the image, since larger windows
give contextual information that is lacking in color and texture features.

Feature Representation

The visual windows are high dimensional (16x11x3 pixels), necessitating a concise and informative
representation. This is crucial in order to reduce processing time as well as removing statistical
redundancies to enable a consistent learning algorithm over these features. We use an unsuper-
vised two layer autoencoder network trained offline with 150 log files from typical outdoor environ-
ments [4]. The network takes inputs from a scale invariant image pyramid [1] [2] and returns 100
dimensional features vectors corresponding to the windows in pyramid bands. These features are
provided to the online learning module.

Dynamic Ensemble Learning

Concept drifts in visual data is common in off-road robot navigation. The statistical properties of
the visual features shift over time, sometimes dramatically, as when the robot moves from forest
to clearing. In cases where the robot is exposed to previously unseen scenarios, online learning
is required to provide adaptivity. However, with the real-time processing requirements, it is often
impractical to maintain a single high capacity classifier. On the other hand, with a a low capacity
learner, it is not possible to capture the characteristics of very high-dimensional and diverse features,
and therefore a stability-plasticity tradeoff becomes unavoidable. To overcome this problem, we are
using a dynamic online ensemble of localized classifiers combined with a mixture of experts [3]
controller. We experiment on various policies to localize experts, to merge their decisions and to
detect outliers.

Evaluation

The long-range vision system has been implemented and tested using the LAGR (Learning Ap-
plied to Ground Robots) platform. Enabling the classifier allows the planner to avoid dead ends
and navigate towards distant paths. The long-range vision runs at 2-3 Hz, so it must be processed
in a separate thread from the main control loop, which runs at 10-15 Hz. This multiple-thread ar-
chitecture allows the vehicle to nimbly avoid close obstacles while using the long-range vision for
strategic navigation.
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(Machine) Learning Robot Control Policies

Daniel H Grollman, Odest Chadwicke Jenkins
{dang,cjenkins}@cs.brown.edu

It currently requires years of education and practice before a skilled user can successfully program a so-
phisticated robot platform to perform a given task. We are exploring ways in which statistical machine
learning techniques can enable Learning from Demonstration, an approach where users ‘reprogram’ a
robot without writing code. In this scenario, a user demonstrates the desired task and the robot learns to
perform the task by observing its performance. We treat this learning as a form of Policy Transfer, where
the decision making policy latent in the demonstrator is transitioned onto the robot.

Taking perception and motion processes as fixed, we represent each policy as a functional mapping from
perceived states to desired actions (π(ŝ) → a

∗). Using teleoperation, a demonstrator guides the robot through
an instance of the desired behavior, creating a set of matched inputs and outputs. Function approximation
techniques can then be applied to find an approximation of the control policy (π̂).

We have left the tasks undefined, as we are interested in how robots can be made to learn Unknown Tasks,
tasks not predefined during construction and original programming. Robots that exhibit Lifelong Learning,
learning over extended periods (years) and in multiple domains, will likely need to deal with this issue.
We have thus been exploring nonparametric function approximators. In addition, by using an algorithm
capable of fast (∼ 30Hz) inference and prediction on our system, we can enable interactive tutelage, where
a demonstrator can observe and correct a learned behavior in realtime using Mixed-Initiative Control.

In our work so far [2], we have explored two such algorithms: Locally Weighted Projection Regression
(LWPR) [4] and Sparse Online Gaussian Processes (SOGP) [1]. Figure 1 compares these two algorithms on
a synthetic data set. Our initial robot-based experiments have focused on soccer-related tasks with robot
dogs, and have shown successful learning from both hand-coded controllers and human demonstration.

Currently, we assume that the desired mapping (π) is functional, that each input has only one correct output.
This is not the case in all contexts, as a robot may be able to perform two or more task-appropriate actions.
We are interested in techniques that can learn such non-deterministic mappings directly from input-output
pairs, such as mixtures of experts [3]. In addition, by incorporating aspects of reinforcement learning we
hope to further our ability to perform task performance refinement and task structure learning.

(a) Noisy Data (b) Ground Truth (c) LWPR, MSE = 0.0202 (d) SOGP, MSE = 0.0244

Figure 1: SOGP and LWPR with default parameters compared on the cross function. We limit SOGP’s
capacity to the number of receptive fields used by LWPR (22).
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Policy iteration is a general framework to obtain the optimal policy by iteratively performing value function
approximation and policy improvement [6]. A traditional practice of policy iteration is, when policies are updated,
new data samples are gathered following the new policy and are used for value function approximation. However,
this approach is inefficient particularly when the sampling cost is high since previously gathered data samples are
simply discarded; it would be more efficient if we could reuse the data collected in the past. A situation where the
behavior policy (a policy used for gathering data samples) and the current target policy are different is called off-policy
reinforcement learning [6].

In the off-policy situation, simply employing a standard policy iteration method (such as least-squares policy
iteration [2]) does not lead to the optimal policy due to the bias caused by the difference between behavior and
target policies. This policy mismatch problem could be eased by the use of importance sampling techniques [1]—the
bias caused by the policy mismatch is asymptotically canceled. However, the approximation error is not necessarily
small when the bias is reduced by importance sampling; the variance of estimators should also be taken into account
since the approximation error is the sum of squared bias and variance. Due to large variance, existing importance
sampling techniques tend to be unstable [6], [3].

To overcome the instability problem, we propose using an adaptive importance sampling technique used in statistics
[4]. The proposed adaptive method, which smoothly bridges the ordinary estimator and importance-weighted estimator,
allows us to control the trade-off between bias and variance. Thus, given that the adaptive parameter is chosen carefully,
the optimal performance can be acheived in terms of both bias and variance. However, the optimal value of the adaptive
parameter is heavily dependent on problems, and therefore using a prefixed adaptive parameter may not be always
effective in practice.

For optimally choosing the value of the trade-off parameter, we reformulate the value function approximation
problem as a supervised regression problem and propose using an automatic model selection method based on a
statistical machine learning theory [5]. The method called importance-weighted cross-validation enables us to estimate
the approximation error of value functions in an unbiased manner even under off-policy situations. Thus we can actively
determine the adaptive parameter based on data samples at hand. We demonstrate the usefulness of the proposed
approach in standard chain-walk and mountain-car benchmark problems.
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Policy search algorithms have been effective in learning good policies in the reinforcement learn-
ing setting. Successful applications include learning controllers for helicopter flight [3] and robot
locomotion [1]. A key step in many policy search algorithms is estimating the gradient of the objec-
tive function with respect to a given policy’s parameters. The gradient is typically estimated from
a set of policy trials. Each of these trials can be rather expensive, and so we prefer to minimize
the total number of trials required to achieve a desired level of performance. During each policy
trial, an agent may receive a considerable amount of sensory data from its environment. While the
agent’s controller may use this information in deciding which actions to take, the sensory data is
usually ignored in the gradient estimation task. In this poster we show that by viewing the task of
estimating the gradient as a structured probabilistic inference problem, we can improve the learning
performance. We argue that in many instances, reasoning about sensory data obtained during policy
execution is beneficial. We demonstrate the effectiveness of this approach by showing a reduction
in the variance of the gradient estimates for a simulated dart throwing problem and quadruped loco-
motion task. Our prior work shows one method of exploiting the sensor data in the case of perfect
sensing of the control noise [2]. This work removes this assumption by allowing the agent access to
a sensor model that only measures the positions of observable joints.

The performance measure f for our dart throwing task is defined as the negative squared distance
to the target, and in the quadruped problem it is the distance travelled during a single policy trial.
Our policies specify the desired trajectories of each controllable joint, and a PD-controller applies
torques in an attempt to follow these paths. Actuator noise is added in the simulation, and the agent
observes the actual joint angles for each policy execution. By using an appropriate encoding of the
sensor data obtained during each policy trial, unexpected sensor values can be used to explain away
the deviations in the observed performance. For example, in the dart throwing problem suppose that
the agent executes a policy and notices that the dart missed the target. Normally, an agent would
want to change it’s desired trajectory so that the next throw moves closer to the target. However,
suppose that during the previous throw the agent noticed that it let go of the dart too soon. This helps
to explain the miss and allows the agent to better infer which direction it needs to move in policy
space to improve its performance.

We consider parameterized policies π ∈ Rd that encode how an agent chooses its actions given its
past observations, and the reinforcement learning goal is to find an optimal policy π∗ that maximizes
the performance measure f . The gradient is estimated from a collection of policy trials by learning
two components. The first component is a linear model between the policy parameters π and a
transformation of the sensor data φ(s) that is almost uncorrelated with the policy parameters. At
each time step we predict what the next observation should be as a function of the current observation
and controls. This prediction is formed by using estimates, which are obtained in a pre-processing
routine, of the current mass matrix, gravity compensation, and inertial terms used in the equations
of motion. We project the difference between the observed states and the predicted states down to a
low-dimensional subspace using a set of basis functions. The second component is a linear model
between the policy parameters π augmented with the sensor data φ(s) and the observed performance
f . If the sensor data correlates with the noise in the performance measure, then this relationship will
be easier to learn when compared to a model that ignores the sensor data.
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Relocatable Action Models for Autonomous

Navigation
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A reinforcement-learning agent, in general, uses
information from the environment to determine the
value of its actions. Once the agent begins acting in
the world, there is no further modification of its be-
havior by humans. This lack of human control makes
the use of reinforcement learning a natural solution
to the autonomous navigation and exploration prob-
lem. However, implementing algorithms from this
field has not always been possible in the robotic do-
main.

Early work in reinforcement learning focused on
approximating values of different locations by map-
ping them to a lower dimension function that
generalized across the environment (Sutton, 1988,
Tesauro, 1995). More recent work has sought to
illuminate foundational issues by proving bounds
on the resources needed to learn near optimal be-
havior (Brafman and Tennenholtz, 2002). Unfortu-
nately, these later papers treat all locations in the
world as being completely independent. As a result,
learning times tend to scale badly with the size of
the state space—experience gathered in one state re-
veals nothing about other states. The generality of
these results makes them too weak for use in real-life
problems in robotics and other problem domains.

The work reported in this poster builds on ad-
vances that retain the formal guarantees of recent
algorithms while moving toward algorithms that gen-
eralize across states. These results rely critically on
assumptions. The main assumption adopted in our
current work (Leffler et al., 2007) is that states be-
long to a relatively small set of types that determine
their transition behavior. In a navigation task, states
can be grouped by terrain type—in areas of similar
terrain, a robot’s action model (how its actions af-
fect its state) will be similar. Once correlations are
discovered, not all actions have to be explored in
every state to fully determine a near optimal pol-
icy. Through the use of relocatable action models,
transition functions learned in one state can be used
to calculate the results of actions in similar states.
By sharing information between homogeneous states
(Leffler et al., 2005), learning time is greatly reduced
by limiting the number of actions that need to be
performed before the world is well modeled.

Learning efficiency can be improved further by
leveraging visual input. If type classification is per-
formed visually, the robot does not have to visit a
location to determine its terrain type. Visual seg-
mentation on texture allows us to perform such clas-
sifications on terrain images.

With our proposed algorithm, the agent acquires
an image of the world and classifies the states into
types using texture segregation. The agent then ex-
plores all of its actions in a representative sample of
states in the environment. Exploiting the assump-
tion of terrain types mentioned above, a generalized
action model for the learned states is applied to other
states of similar terrain, greatly improving learning
time when there are many more states than terrain
types.

This work was implemented on a Lego Mindstorm
wheeled robot in a 4 foot by 4 foot domain with
two ground surfaces. Using our algorithm, the agent
was able to obtain action models for each terrain
and reach the goal on the first run. After five runs,
the agent performed the learned policy continuously.
This approach was compared against RMAX, which
after 50 runs was not able to reliably reach the goal.
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Extended Abstract

Developmental robotics is the process whereby a robot incrementally acquires more and more complex
cognitive skills. This approach draws inspiration from biology to tackle the ultimate goal of robotics, i.e.
intelligent robust machines operating in open ended environments. The main idea is to equip the robot
with a set of predefined (pre-programmed) skills and then follow learning processes to acquire new ones
on top of current knowledge.

Acquiring new skills requires combining many learning process such as unsupervised self-exploration,
learning by observation or reinforcement learning. The success of the approach also depends heavily on
the models used by the robot to represent and use this knowledge. In this work we discuss which machine
learning methods and models are and can be used to create a robot that develops autonomously. We
discuss a possible developmental pathway whereby a robot acquires the capability to learn by imitation. It
is composed by three levels: 1) sensory-motor coordination; 2) world interaction; and 3) imitation. At each
stage the system learns more about its own body and about the world. The newly acquired knowledge
enables and facilitates the learning at the next level.

We focus our work on two main problems related to the world interaction and imitation phases re-
spectively: learning the properties and dynamics of objects (affordances) and inferring task descriptions
from observations (imitation). Affordances represent the behaviour of objects in terms of the robot’s motor
and perceptual skills. This type of knowledge plays a crucial role in developmental robotics, since it is
at the core of many higher level skills such as imitation. In our work, we propose a general affordance
model based on Bayesian networks. This model describes inter-relations between actions, object features
and observable effects. The robot learns the structure and parameters of the network by interacting with
different objects.

Knowledge of the world in turn enables social interaction. The nature of this third phase is very dif-
ferent from the previous ones. It requires the robot to interact with a teacher which in turn provides
supervision or reinforcement. We develop an imitation learning methodology for a humanoid robot that
uses the general world model acquired previously to infer the task to be learnt from the teacher’s demon-
strations. The core of our algorithm is the recently proposed Bayesian inverse reinforcement learning
algorithm. The challenges are to reuse a general task independent model and to estimate the appropriate
rewards/policies.

The proposed framework gives rise to several important issues and future directions for research. For
instance, generalizing robot-object interaction knowledge requires to take into account groups of objects,
sequences of actions and delayed effects. Active learning strategies should be implemented to deal with
huge search spaces. Another important point is the interaction between the different learning processes,
e.g the evolution of actions from pure joint positions or velocities to (possibly parameterized) motion
primitives. Finally, it is important to perceive the impact of inaccurate learnt models in subsequent steps.
For example, in the imitation stage, errors in the recognition of the demonstration may affect the learning
of the demonstrated task.
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Extended Abstract

In theory, the formalism and methods of reinforcement learning (RL) can be applied to address
any optimal control task, yielding optimal solutions while requiring very little a priori information
on the system itself. However, in practice, RL methods suffer from the “curse of dimensionality”
and exhibit limited applicability in complex control problems. Unfortunately, many actual control
problems are inherently infinite, described in terms of continuous state variables. This is the case,
for example, of optimal control of autonomous vehicles or complex robotic systems. However, the
combination of value-based methods (such as Q-learning) and function approximation is far from
trivial and the usefulness of the obtained solutions is still not clear. This has, perhaps, motivated
the impressive advances in policy-gradient-based methods in recent years [3].

The motivation to extend these methods to multi-robot scenarios is evident. Many tasks found
in practice are inherently too complex or even impossible for a single robot to execute. Fur-
thermore, it is often the case that the use of several cheap robots is preferrable to the use of a
single complex and expensive robot. On the other hand, the “traditional RL approach” makes
use of game theoretic models such as Markov games. These approaches are generally unsuited to
address problems envolving real robots, because they rely on several joint-observability assump-
tions inherent to these models that seldom hold in practice. Finally, more realistic models such as
Dec-POMDPs are inherently too complex to be solved exactly.

It is in face of this inherent complexity in addressing complex multi-robot problems that policy
gradient methods may prove of use. In this work, we conduct a preliminary study of policy-
gradient methods in multi-robot problems. In particular, we analyze how successful policy-based
approaches such as WoLF-PHC [1] can be adapted to accomodate the recent developments in
policy gradient methods. The setting considered in this work is distinct from other approaches in
the literature [2] in that we assume no joint-state or joint-action observability, which renders our
approach more adequate to address multi-robot problems (where such assumptions seldom hold).
We study how the existence of several independent learners in a common environment effects the
overall learning performance of the different agents in several simple multi-robot scenarios and
discuss how this approach can be extended to more complex problems.
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Optimal feedback control (OFC) has been proposed as an attractive movement generation
strategy in goal reaching tasks for anthropomorphic manipulator systems. In contrast to classic
open loop optimizers that produce “just” a minimal-cost trajectory with implicit resolution
of kinematic and dynamic redundancies, the OFC framework additionally yields a feedback
control law which corrects errors only if they adversely affect the task performance (minimum
intervention principle).

Locally, the optimal feedback control law for systems with non-linear dynamics and non-
quadratic costs can be found by iterative methods, such as the recently introduced iterative
Linear Quadratic Gaussian (iLQG) algorithm [1]. So far this framework relied on an analytic
form of the system dynamics, which may often be unknown, difficult to estimate for more
realistic control systems or may be subject to frequent systematic changes.

We present a novel combination of learning a forward dynamics model within the iLQG
framework, for which we employ Locally Weighted Projection Regression (LWPR) [2]. Utilising
such adaptive internal models can compensate for complex dynamic perturbations of the con-
trolled system in an online fashion. Moreover, through the availability of analytic derivatives
of the learned model, the adaptive iLQG–LD framework we introduce lends itself to a compu-
tationally more efficient implementation of the iLQG optimization without sacrificing control
accuracy, allowing the method to scale to large DoF systems.

Up to now, we studied iLQG–LD on two different joint torque controlled manipulators as
simulated by the Matlab Robotics Toolbox: i) a planar 2 DoF manipulator, which is ideal
for performing extensive (quantitative) comparison studies and to test the manipulator under
controlled perturbations and force fields during planar motion, and ii) a 6 DoF manipulator
with realistic physical parameters. We successfully tested our iLQG–LD framework with both
stationary and non-stationary dynamics, simulating constant or velocity-dependent force fields.

Our current work concentrates on implementing the iLQG–LD framework on the 7-DOF
robot arm hardware of the German Aerospace Centre (DLR), which raises challenges such as
a very high-dimensional input space (7 commands + 14 motor states + 14 joint states) and
a high sampling rate of 1kHz. In the future, we will aim for the biomorphic variable stiffness
based highly redundant actuation system that is currently developed at DLR – this will not only
explore an alternative control paradigm, but will also provide the only viable and principled
control strategy for such a system.
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Abstract

Controlling articulated mobile robots is associated with the manipulation of very
complex dynamics, leading to a straightforward lack in the kind of motions these
robots can complete, i.e. confined to those computed off-line from the very ap-
proximated models of its bodies’ physics. Trajectory generation based on safety
mathematical conditions, e.g. avoiding singularities or non-equilibrium states,
limites its performance. It has been demonstrated that, by means of optimization
process inside the low level control laws, robots may outperform its physical ca-
pabilities [1]. Inverse dynamics of very approximated and complex models are not
helpful to design natural motions.

The system presented in this paper uses a modular control architecture, where
joint’s actuators share information between each other. The policies that gather
and distribute the signals to the actuators are learned based on the task perfor-
mance.

Here we defend the idea of learning low level control primitives to achieve
coordination [2], allowing the system to generate trajectories autonomously by
using Policy Gradient Reinforcement learning techniques (PGRL), i.e an optimal
control framework is established.

In this poster a time-varying dynamics task is used as a test bed : The sim-
ulated version of the AIBO! robot completing a basketball-like task by means
of PGRL ( see process video); control actions and output signals are presented
while comparing changes during learning; additionally, different kind of PGRL
algorithms are proved and compared from a control systems’ perspective.

1
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Abstract

A humanoid robot like ASIMO is required to accomplish tasks requiring interac-
tion with people such as object delivery tasks. These tasks require keeping track
of past observations of people and objects in the environment. Previous work has
used ad-hoc methods to manually encode regions to explore to accomplish these
tasks. In this paper, we describe how Region based Particle Filters can be used to
maintain and update belief about objects and people location over extended time
periods.

We have implemented and demonstrated this work on a Pioneer mobile robot. We
first detect people and objects in the scene using depth and vision sensors. We cre-
ate a map of the environment and use off the shelf techniques for localization and
path planning using SICK laser. We describe use of Dynamic Bayesian Network
to maintain and update belief about each people and object location. We run sep-
arate particle filters for each person and object and for robots’ own location. We
update these particle filters with information from observations using sampling
and re-sampling to incorporate observations over time during the day.

1 Introduction

In this work, we introduce a region-based belief representation of peoples’ locations. The idea is to
model the person’s location by a hierarchical process that first selects a region and then conditioned
on that a position (X-Y coordinate) for the person. The regions are chosen to be resting places where
people people typically stop and stay for long periods of time. For example office desks, the area
in front of a TV, water cooler, printer etc. Typically the region is a discrete variable, and position
is a linear gaussian conditional on region. This representation allows us to separate transitions that
occur at different time scales into the different layers of the model (e.g. deliberate movement from
conference room to office desk vs. fidgeting in an office chair). We propose using a Dynamic
Bayesian Network (DBN) to track the state of our model over time. Even if the person goes out
of view of the robot, it knows that individuals tend to move at a certain maximum speed, that the
individuals (for example, someone sitting in their office) is more likely to stay there for a while
before moving to a different location.

We demonstrate the use of our belief tracker to carry out simple delivery tasks: Pick up objects
from a fixed location and deliver them to the corresponding individual. As a result of using multiple
sensors, we have a more complicated observation model which updates measurement weights based
on the current robot view and walls in the environment that limit the observation regions. Integrat-
ing these various sensors together(depth sensor, vision camera, laser scans, plus robot odometry)
presented a significant engineering challenge.

1



2 Related Work

Past work concentrates on tracking movement of people in the immediate neighborhood of the mo-
bile robot over short time periods. Montemerlo et. al. [2] used a probabilistic algorithm for simul-
taneously estimating the pose of the mobile robot and positions of people in a previously mapped
environment. They used a laser sensor and tracked two people in the vicinity. Schulz et. al. [3] also
used a laser sensor to keep track of people in vicinity and handle cases where people are obstructed
over short time periods. Bennewitz et. al. [1] track people over long time periods but need to first
learn the transitions in the environment.

3 Results

(a) Pioneer Robot in the room (b) Particle filter with belief for robot and person
position

Figure 1: (i) prior belief at starting (ii) belief after person is detected (iii) belief after person is no
longer seen (iv) belief before turning around (v) belief after turning around (vi) belief after person
is seen again
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Abstract

The suggested poster summarizes and extends the approach presented in [1]. There, our work
focused on learning the inverse dynamics of a robot arm using an efficient exploration strategy. We
developed an active learning scheme for the LWPR algorithm [2] to guide data selection to regions
of high model uncertainty until a task-specific trajectory can be realized by the manipulator. We
position our work as an alternative to manual data collection (such as human guidance to specific
points in the task space) and to simpler exploration schemes such as random flailing of the robot
arm.

As in Vijayakumar et al’s work, we use a compliant composite controller consisting of a learned
feedforward model of the inverse dynamics and a low-gain corrective PID element. We address two
difficulties with data selection for robot control: first, points cannot be chosen freely from the input
distribution (order-sensitive scenario) and second, we would like to learn the inverse dynamics of
the system online. Our active learning algorithm trades off between exploitation of the current
LWPR model and exploration based on the confidence in the current LWPR predictions. In [1] we
derive confidence bounds around the LWPR model and use these during learning as follows:

1. At every time step we determine model prediction and prediction confidence for the current
query point xq. We postulate that the model generalization error is approximated by the size
of the confidence intervals.

2. If the confidence is above a threshold, we apply the model prediction as a control signal to
all joints and continue with step 1. Otherwise, we define xq−1, i.e., the last point that we
trusted our model predictions, as a setpoint.

3. We execute a number of directed exploratory actions around xq−1 to reduce the confidence
interval size. In our current implementation those are random control signals followed by
“resetting” the arm to the setpoint via high-gain PID control. We then continue with step 1.

By focusing exploration to the subspace where a particular task requires control, data collection
of our algorithm is trajectory-specific. In [1] we presented results for a simulated 2-DOF robot
arm along an arbitrary trajectory with a bell-shaped velocity profile. The work presented in this
poster extends the evaluation to a simulated 6-DOF Puma arm. For both we demonstrate that our
algorithm significantly reduces the number of data points (and time) required over random flailing
to learn an inverse model that successfully drives back the trajectory. Evaluations are presented as
reduction in normalized mean-square error (nMSE) along the trajectory with respect to the number
of data points used during learning.
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Learning 3-D Object Orientation from Images

Ashutosh Saxena, Justin Driemeyer and Andrew Y. Ng
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We consider the problem of estimating the 3-D orientation ofobjects from a single image, even in
the presence of symmetries of the object. We apply our algorithm both to estimating orientation of
new objects from a known object class, and to robotic manipulation, where the task is to grasp (pick
up) an object from a previously unknown object class.

Estimating orientation is a fundamental problem in computer vision, but is difficult because (i) The
space of orientations is intrinsically non-Euclidean and non-linear, (ii) The presence of symmetries
means that orientation is ambiguous, in that there are multiple “correct” orientations.[1] These two
properties make orientations difficult to learn using standard learning algorithms.

In this paper, we present a novel representation for orientation that is invariant to symmetries in the
object. Our representation applies even to objects that exhibit arbitrary (rotational, reflective, axial,
etc.) symmetries in 2-D or 3-D. Using this representation, we further develop novel learning and
inference algorithms for estimating orientations of symmetric and asymmetric objects.

We first describe previous methods to learn 3-D orientation,and describe their deficiencies. Specifi-
cally, they fail when the range of angles considered does notlie within a small range.[2] In contrast,
our method does not assume any restriction on the range of angles considered, and is accurate even
in the fully general case.

We extensively evaluate previous methods, and our algorithm, on two tasks: (i) Estimating the 3-D
orientation of a new object (drawn from a known object class), and (ii) Choosing the orientation of
a robot arm/hand so as to enable it to grasp a new object (wherehere the previously-unseen object
is drawn from a previously-unknown object class). We show that in all cases, our algorithm results
in significantly lower error. We have also successfully applied these ideas to enabling our robot to
grasp a variety of objects.

Figure 1: Figure shows the robots grasping a roll of duct tape, a stapler, a wine-glass and a cereal
bowl.
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Introduction: The recent trend toward developing a new generation of robots 
capable of operating in human-centered environments, interacting with people, and 
participating and helping us in our daily lives, has introduced the need for robotic 
systems capable of learning to use their embodiment to communicate and to react to 
their users in a social and engaging way. Social robots that interact with humans 
have thus become an important focus of robotics research. Nevertheless, Human-
Robot Interaction (HRI) for assistive applications is still in its infancy. In this work, 
the target user population is post-stroke patients. Stroke is the leading cause of 
serious, long-term disability among adults, with over 750,000 people suffering a 
new stroke each year in the US alone. Therefore, in this work we investigated the 
role of robot’s active learning in the assistive therapy process. We tried to address 
the following research question: How should the behavior and encouragement of the 
therapist robot adapt as a function of the user’s personality, profile, preferences, and 
task performance?  

Methodology: Creating robotic systems capable of adapting their behavior to user 
personality, user preferences, and user profile in order to provide an engaging and 
motivating customized protocol, is a very difficult task, especially when working 
with vulnerable user populations. Various learning approaches for human-robot 
interaction have been proposed in the literature, but none include the user’s profile, 
preferences, and/or personality. To the best of our knowledge, no work has yet 
tackled the issue of robot personality and behavior adaptation as a function of user 
personality in the assistive human-robot interaction context. In the work described 
here, we address those issues and propose a reinforcement-learning-based approach 
to robot behavior adaptation. In the learning approach, the robot incrementally 
adapts its behavior and thus its expressed personality as a function of the user’s 
extroversion-introversion level and the amount of performed exercises, attempting 
to maximize that amount. We formulated the problem as policy gradient 
reinforcement learning (PGRL) and developed a learning algorithm that consists of 
the following steps: (a) parametrization of the behavior; (b) approximation of the 
gradient of the reward function in the parameter space; and (c) movement towards a 
local optimum. The main goal of our robot behavior adaptation system is to enable 
us to optimize on the fly the three main parameters (interaction distance/proxemics, 
speed, and verbal and paraverbal cues) that define the behavior (and thus 
personality) of the therapist robot, so as to adapt it to the user’s personality and thus 
improve the user’s task performance. Task performance is measured as the number 
of exercises performed in a given period of time; the learning system changes the 
robot’s personality, expressed through the robot’s behavior, in an attempt to 
maximize the task performance metric.  

Experimental Results: Two experiments were designed to test the adaptability of 
the robot’s behavior to the participant’s personality and preferences. The 



 

experimental task was a common object transfer task used in post-stroke 
rehabilitation and consisted of moving pencils from one bin on the left side of the 
participant to another bin on his/her right side. The bin on the right was on a scale in 
order to measure the user’s task performance. The system monitored the number of 
exercises performed by the user. The robot used PGRL algorithm to adapt its 
behavior to match each participant’s preferences in terms of therapy style, 
interaction distance, and movement speed. The learning algorithm was initialized 
with parameter values that were in the vicinity of what was thought to be acceptable 
for both extroverted and introverted individuals, based on our previous experiments 
[2] and psychology literature. The PGRL algorithm used in our experiments 
evaluated the performance of each policy over a period of 60 seconds. The reward 
function, which counted the number of exercises performed by the user in the last 
15 seconds, was computed every second and the results over the 60 seconds 
“steady” period were averaged to provide the final evaluation for each policy. The 
result is a novel stroke rehabilitation tool that provides individualized and 
appropriately challenging/nurturing therapy style that measurably improves user 
task performance. 

Discussion: Due to the large number of combinations of parameter values that have 
to be investigated during the adaptation phase the optimal policy might be obtained 
only after a period of time that exceeds our session of exercise (i.e., 15 minutes). 
However, we feel that this does not reduce the efficiency of our approach or the 
relevance of our results, as our research targets interaction with patients for an 
extended period of time and where many therapy sessions are required for complete 
rehabilitation. Thus, if the optimal policy is not reached during one therapy session 
the adaptation process can be extended over several sessions, with most of the 
interaction occurring with the optimal policy in place. In fact, this is very similar to 
real-life situations where therapists get to know patients over several therapy 
sessions and respond to their clues to provide a more efficient recovery 
environment. 

Conclusions: We presented a non-contact therapist robot intended for monitoring, 
assisting, encouraging, and socially interacting with post-stroke users during 
rehabilitation exercises. The experimental results provide first evidence for the 
effectiveness of robot behavior adaptation to user personality and performance. 
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Teaching robots to perform complex behaviors using reinforcement learning (RL) algorithms is a long-term goal of the 

machine learning community. This goal is underwritten by our familiarity with nervous systems which evidently implement 

some form of RL, while simultaneously setting the highest benchmark for motor control. When attempting to learn optimal 

controllers, stochasticity is often considered a hurdle to be overcome.  Methods which deal with uncertainty, whether process 

noise, measurement noise or modeling uncertainty are seen as extensions of the observable deterministic case, as exemplified 

by the stochastic and robust extensions to linear-quadratic control.  

 

Perhaps surprisingly, the assumption of stochastic dynamics can also simplify learning algorithms. Intuitively, the smoothing of 

our beliefs about the world into a distribution function entails a limiting of the spatial bandwidth of our predictions and 

therefore an effective reduction of dimensionality, which can consequently be exploited.   

 

In order to benefit from this low-pass effect, our model and algorithm must be spatially continuous. An important class of 

algorithms which take advantage of continuity and smoothness are those which construct second-order approximations of their 

parameters, as epitomized by the classic Newton’s method. When implementing second-order algorithms, stochasticity of the 

dynamics is shown to reduce the condition number of Hessian matrices, a chief measure of convergence quality. We present 

two recent results where such phenomena occur in two very different settings. 

 

Restricting ourselves to the dynamic programming (DP) framework, we consider algorithms which learn the value function, or 

solve the Hamilton Jacobi Bellman (HJB) equation. Using a general-purpose feedforward neural network to approximate the 

value function, we apply a Levenberg-Marquardt algorithm to minimize the squared HJB residual [1]. When a Brownian noise 

term is introduced into the dynamics, an additional second-derivative term is added to the HJB equation. We show how the 

addition of this term to the residual, without injecting any actual noise, smoothes the value function and reduces the condition 

number of the Hessian by orders of magnitude. 

 

In the second example we use Differential Dynamic Programming (DDP), a method which iteratively computes an explicit 

second-order model of the value function along a trajectory [2]. At points where small changes in the policy have large effects 

on the value, the local Hessian matrices can become ill-conditioned and lead to divergence or slow convergence. We show how 

the introduction of worst-case minimax noise in the H
∞
 control framework also has a conditioning effect on these local 

matrices. 
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Every day motor behavior consist of a plethora of challenging motor skill

from discrete movements such as reaching and throwing to rhythmic move-

ments such as walking, drumming and running. How this plethora of skills

can be learned remains an open question. In particular, is there any unifying

computational framework that could model the learning process of this va-

riety of motor behaviors and at the same time be biologically plausible? In

this work we aim to give an answer to these questions by providing a com-

putational framework that unifies the learning mechanism of both rhythmic

and discrete movements under optimization, ie, in a non-supervised trial and

error fashion way.

Our suggested framework is based on Reinforcement Learning, which is

mostly considered as too costly to be a plausible mechanism for learning com-

plex limb movement. However, recent work on reinforcement learning with

policy gradient methods and weak derivatives combined with the parameta-

rized movement primitives allows novel and more efficient algorithms. By

using the representational power of motor primitives we show how rhythmic

motor behaviors such as walking, squashing and drumming as well as dis-

crete behaviors like reaching and grasping can be learned. Furthermore we

are proposing a new method of estimating the policy gradient by using the

weak derivatives framework and also test a evaluate this new method into

3D arm simulator.
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We propose a Bayesian nonparametric regression algo-
rithm with locally linear models for high-dimensional,
data-rich scenarios where real-time, incremental learn-
ing is necessary. Nonlinear function approximation
with high-dimensional input data is a nontrivial prob-
lem. For example, real-time learning of internal mod-
els for compliant control may be needed in a high-
dimensional movement system like a humanoid robot.
Fortunately, many real-world data sets tend to have
locally low dimensional distributions, despite having
high dimensional embedding [1, 2]. A successful algo-
rithm, thus, must avoid numerical problems arising po-
tentially from redundancy in the input data, eliminate
irrelevant input dimensions, and be computationally
efficient to allow for incremental, online learning.

Several methods have been proposed for nonlinear
function approximation, such as Gaussian process re-
gression [3], support vector regression [4] and varia-
tional Bayesian mixture models [5]. However, these
global methods tend to be unsuitable for fast, incre-
mental function approximation. Atkeson et al. [6] have
shown that in such scenarios, learning with spatially
localized models is more appropriate, particularly in
the framework of locally weighted learning. In re-
cent years, Vijayakumar et al. [7] have introduced a
learning algorithm designed to fulfill the fast, incre-
mental requirements of locally weighted learning, tar-
geting high-dimensional input domains through the
use of local projections. This algorithm, called Lo-
cally Weighted Projection Regression (LWPR), per-
forms competitively in its generalization performance
with state-of-the-art batch regression methods and has
been applied successfully to sensorimotor learning on
a humanoid robot.

The major issue with LWPR is that it requires gra-
dient descent (with leave-one-out cross-validation) to
optimize the local distance metrics in each local regres-
sion model. Since gradient descent search is sensitive
to the initial values, we propose a novel Bayesian treat-
ment of locally weighted regression with locally linear
models [8] that eliminates the need for any manual tun-
ing of meta parameters, cross-validation approaches or
sampling. Combined with variational approximation
methods to allow for fast, tractable inference, our al-

gorithm learns the optimal distance metric value for
each local regression model. It is able to automati-
cally determine the size of the neighborhood data (i.e.,
the “bandwidth”) that should contribute to each local
model. A Bayesian approach offers error bounds on
the distance metrics and incorporates this uncertainty
in the predictive distributions. By being able to auto-
matically detect relevant input dimensions, our algo-
rithm is able to handle high-dimensional data sets with
a large number of redundant and/or irrelevant input
dimensions and a large number of data samples. We
demonstrate competitive performance of our Bayesian
locally weighted regression algorithm with Gaussian
Process regression and LWPR on standard benchmark
sets.
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Twoarmed bandit learning demonstration.  On each trial, the AIBO robot must choose 
whether to  press  the left or right side of the keyboard.  Reward or nonreward is 
indicated by a sound and a color change of a bouncing ball on the display.  The head 
moves to track the ball.

Combining configural and TD learning to demonstrate negative patterning (XOR).  A 
red or blue ball stimulus is followed a few seconds later by a reward signal (thumbs up 
gesture).  But both balls together are not followed by reward.  The robot learns to 
make an appropriatelytimed reward response (tail wag) only to single balls.

Tekkotsu (the name means “framework”, literally “iron bones” in Japanese) is an open source application 
development framework for mobile robots originally created for the Sony AIBO. It has since been extended 
to support a variety of other platforms, and is available for free at Tekkotsu.org. Tekkotsu promotes a high 
level approach to robot programming we call “cognitive robotics” by providing primitives that make it easy to 
implement new applications. These include a “dual coding” vision system with map builder,  particle filter
based localization, forward and inverse kinematics solvers, and an extensive collection of GUI tools for 
teleoperation and monitoring.  Tekkotsu is implemented in C++, with the GUI tools in Java for portability.

Although primarily intended for undergraduate robotics education, Tekkotsu has also proven useful as a 
research platform because of its powerful and wellintegrated primitives. We have in the past used Tekkotsu 
to demonstrate classic machine learning problems such as the twoarmed bandit, and negative patterning 
(XOR learning). The images below are screenshots from demo videos available at Tekkotsu.org. Current 
projects include addition of a SIFTstyle object recognition facility, and development of visuallyguided motor 
primitives for grasping and manipulation of small objects using a Lynx Motion arm.  (The arm is part of a new 
prototype robot called Regis.) We encourage machine learning researchers to consider Tekkotsu if they wish 
to test their algorithms on real robots.

Touretzky, D.S., Daw, N.D., and TiraThompson, E.J. (2002) Combining configural and TD learning on a
   robot. Proceedings of the Second International Conference on Development and Learning, IEEE Computer
   Society, pp. 4752.
Touretzky, D.S., Halelamien, N.S., TiraThompson, E.J., Wales, J.J., and Usui, K. (2007) Dualcoding
   representations for robot vision in Tekkotsu. Autonomous Robots, 22(4):425–435.

Supported by National Science Foundation awards CNS0540521, DUE0717705, and CNS0742106.

Regis prototype created specifically for research on visually guided manipulation in 
Tekkotsu.  Features include a 600 MHz/128 MB gumstix processor, “goose neck” 
webcam (4dof arm with camera at the tip), and a frontmounted 6dof “crab arm” 
manipulator lying in the plane of the workspace for unobstructed visual monitoring.
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Abstract

Establishing the spatial and temporal relationships among a robot, stationary entities and moving
entities in a scene serves a basis for robot perception. Localization is the process of establishing
the spatial relationships between the robot and stationary objects, mapping is the process of estab-
lishing the spatial relationships among stationary objects, and moving object tracking is the process
of establishing the spatial and temporal relationships between moving objects and the robot or be-
tween moving and stationary objects. Localization, mapping and moving object tracking are difficult
because of uncertainty and unobservable states in the real world.

Over the last two decades, the simultaneous localization and mapping (SLAM) problem has attracted
immense attention in the robotics literature. Theoretical and practical issues such as representation,
computational complexity and data association have been addressed. However, it is assumed that the
scene is stationary in SLAM and moving objects are filtered out. In [1, 2], we pointed out that SLAM
and moving object tracking are mutually beneficial. A mathematical framework was established to
integrate SLAM and moving object tracking in which a solid basis is provided for understanding
and solving the whole problem, simultaneous localization, mapping and moving object tracking,
or SLAMMOT. In [3], we further relaxed the assumption that the robot and moving objects move
independently of each other, and proposed a scene interaction model and a neighboring object inter-
action model to accomplish interacting object tracking in crowded urban areas. With the use of the
interaction models, unusual activity recognition is accomplished straightforwardly.

It is believed by many that a solution to the SLAM problem will open up a vast range of potential
applications for autonomous robots. We believe that a solution to robot perception will expand the
potential for robotic applications still further, especially in applications which are in close proximity
to human beings. In this poster, we summarize the approaches to learn the map, to classify moving
and stationary entities, and to recognize short-term and long-term interactions between the robot and
the dynamic scene. In addition, robot perception challenges and opportunities for machine learning
are addressed.
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1 Extended Abstract

In many domains, demonstrating good behavior is eas-
ier than tuning parameters of an agent so that it be-
haves in a desirable way. A powerful recent idea to
approach problems of imitation learning is to struc-
ture the space of learned policies to be solutions to
search, planning, or, more generally, Markov Decision
Problems. The imitation learning problem then is re-
duced to recovering a reward function that induces the
demonstrated behavior.

Ratliff et al. [2] cast this problem as one of structured
maximum margin prediction (MMP). These authors
consider a class of loss functions that directly measure
disagreement between an expert and a learned policy,
and then efficiently learn a reward function using a
convex relaxation of the loss function using the struc-
tured margin method using only oracle access to an
MDP solver. However, this method suffers from some
significant drawbacks when a single policy is not signif-
icantly better than all other policies, which can occur
frequently in the presence of noise.

Abbeel and Ng [1] provide an alternate approach based
on Inverse Reinforcement Learning (IRL). They pro-
pose a strategy of matching feature expectations be-
tween an expert’s policy and a learner’s behavior. Un-
fortunately, both the IRL concept and the matching
feature counts are ambiguous. Each policy can be op-
timal for many reward functions (e.g., all zeros) and
many policies or distributions over state/action pairs
can lead to the the same feature counts. No method
is proposed to resolve the ambiguity.

In this work, we treat uncertainty about expert behav-
ior in a thoroughly probabilistic way. As in [1] and [2],
we require our policies to match feature expectations.
However, we attempt to estimate the probability of an
expert taking trajectories as p(ξ) using the principle of
maximum entropy, which suggests that the natural dis-
tribution on trajectories is the unique distribution that
maximizes the entropy of the distribution of trajecto-

ries subject to meeting the expectation constraints. In
the absence of additional knowledge, the problem then
is clear: maxH(p(ξ)) subject to Ep[fi(ξ)] = ci where
ci are feature counts experienced by the expert we wish
to imitate.

Solving this optimization problem yields a distribution

on trajectories of the form p(ξ) ∝ e−wT f , for feature
counts f . The most likely trajectory then is, naturally,
the one which minimizes wT f (where f is the feature
count over the trajectory). We show that MaxEntIRL
is more robust to noise than MMP and removes the
ambiguity about reward functions that occurs with
methods based on IRL, while providing the same key
guarantee. MaxEntIRL produces policies that achieve
(nearly) the same reward as the expert demonstrating
the policy on the expert’s unknown reward function –
even when that exact reward function is unrecoverable
(without ambiguity) from the available data.

For problems where actions have deterministic out-
comes, the gradient of this convex optimization is
then the difference between our learned policy’s fea-
ture expectations and those of the demonstrated policy
(Equation 1), for which we provide efficient algorithms
for fixed time thresholds.

δ

δwk

P (ξ̃|w) = ci − Ep[fi(ξ)|w] (1)

We apply this method to learn context-sensitive driv-
ing route preferences. The features of each road seg-
ment (e.g., road type, number of lanes) are mapped
to a negative reward by parameters we optimize us-
ing over 100,000 miles of GPS trace data collected
from Yellow Cab Pittsburgh taxi drivers. The result-
ing model is employed for recommending routes that
use some of the traffic-avoding tricks that cab drivers
employ.
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