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Policy search algorithms have been effective in learning good policies in the reinforcement learn-
ing setting. Successful applications include learning controllers for helicopter flight [3] and robot
locomotion [1]. A key step in many policy search algorithms is estimating the gradient of the objec-
tive function with respect to a given policy’s parameters. The gradient is typically estimated from
a set of policy trials. Each of these trials can be rather expensive, and so we prefer to minimize
the total number of trials required to achieve a desired level of performance. During each policy
trial, an agent may receive a considerable amount of sensory data from its environment. While the
agent’s controller may use this information in deciding which actions to take, the sensory data is
usually ignored in the gradient estimation task. In this poster we show that by viewing the task of
estimating the gradient as a structured probabilistic inference problem, we can improve the learning
performance. We argue that in many instances, reasoning about sensory data obtained during policy
execution is beneficial. We demonstrate the effectiveness of this approach by showing a reduction
in the variance of the gradient estimates for a simulated dart throwing problem and quadruped loco-
motion task. Our prior work shows one method of exploiting the sensor data in the case of perfect
sensing of the control noise [2]. This work removes this assumption by allowing the agent access to
a sensor model that only measures the positions of observable joints.

The performance measure f for our dart throwing task is defined as the negative squared distance
to the target, and in the quadruped problem it is the distance travelled during a single policy trial.
Our policies specify the desired trajectories of each controllable joint, and a PD-controller applies
torques in an attempt to follow these paths. Actuator noise is added in the simulation, and the agent
observes the actual joint angles for each policy execution. By using an appropriate encoding of the
sensor data obtained during each policy trial, unexpected sensor values can be used to explain away
the deviations in the observed performance. For example, in the dart throwing problem suppose that
the agent executes a policy and notices that the dart missed the target. Normally, an agent would
want to change it’s desired trajectory so that the next throw moves closer to the target. However,
suppose that during the previous throw the agent noticed that it let go of the dart too soon. This helps
to explain the miss and allows the agent to better infer which direction it needs to move in policy
space to improve its performance.

We consider parameterized policies π ∈ Rd that encode how an agent chooses its actions given its
past observations, and the reinforcement learning goal is to find an optimal policy π∗ that maximizes
the performance measure f . The gradient is estimated from a collection of policy trials by learning
two components. The first component is a linear model between the policy parameters π and a
transformation of the sensor data φ(s) that is almost uncorrelated with the policy parameters. At
each time step we predict what the next observation should be as a function of the current observation
and controls. This prediction is formed by using estimates, which are obtained in a pre-processing
routine, of the current mass matrix, gravity compensation, and inertial terms used in the equations
of motion. We project the difference between the observed states and the predicted states down to a
low-dimensional subspace using a set of basis functions. The second component is a linear model
between the policy parameters π augmented with the sensor data φ(s) and the observed performance
f . If the sensor data correlates with the noise in the performance measure, then this relationship will
be easier to learn when compared to a model that ignores the sensor data.
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