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A reinforcement-learning agent, in general, uses
information from the environment to determine the
value of its actions. Once the agent begins acting in
the world, there is no further modification of its be-
havior by humans. This lack of human control makes
the use of reinforcement learning a natural solution
to the autonomous navigation and exploration prob-
lem. However, implementing algorithms from this
field has not always been possible in the robotic do-
main.

Early work in reinforcement learning focused on
approximating values of different locations by map-
ping them to a lower dimension function that
generalized across the environment (Sutton, 1988,
Tesauro, 1995). More recent work has sought to
illuminate foundational issues by proving bounds
on the resources needed to learn near optimal be-
havior (Brafman and Tennenholtz, 2002). Unfortu-
nately, these later papers treat all locations in the
world as being completely independent. As a result,
learning times tend to scale badly with the size of
the state space—experience gathered in one state re-
veals nothing about other states. The generality of
these results makes them too weak for use in real-life
problems in robotics and other problem domains.

The work reported in this poster builds on ad-
vances that retain the formal guarantees of recent
algorithms while moving toward algorithms that gen-
eralize across states. These results rely critically on
assumptions. The main assumption adopted in our
current work (Leffler et al., 2007) is that states be-
long to a relatively small set of types that determine
their transition behavior. In a navigation task, states
can be grouped by terrain type—in areas of similar
terrain, a robot’s action model (how its actions af-
fect its state) will be similar. Once correlations are
discovered, not all actions have to be explored in
every state to fully determine a near optimal pol-
icy. Through the use of relocatable action models,
transition functions learned in one state can be used
to calculate the results of actions in similar states.
By sharing information between homogeneous states
(Leffler et al., 2005), learning time is greatly reduced
by limiting the number of actions that need to be
performed before the world is well modeled.

Learning efficiency can be improved further by
leveraging visual input. If type classification is per-
formed visually, the robot does not have to visit a
location to determine its terrain type. Visual seg-
mentation on texture allows us to perform such clas-
sifications on terrain images.

With our proposed algorithm, the agent acquires
an image of the world and classifies the states into
types using texture segregation. The agent then ex-
plores all of its actions in a representative sample of
states in the environment. Exploiting the assump-
tion of terrain types mentioned above, a generalized
action model for the learned states is applied to other
states of similar terrain, greatly improving learning
time when there are many more states than terrain
types.

This work was implemented on a Lego Mindstorm
wheeled robot in a 4 foot by 4 foot domain with
two ground surfaces. Using our algorithm, the agent
was able to obtain action models for each terrain
and reach the goal on the first run. After five runs,
the agent performed the learned policy continuously.
This approach was compared against RMAX, which
after 50 runs was not able to reliably reach the goal.
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