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Abstract

The suggested poster summarizes and extends the approach presented in [1]. There, our work
focused on learning the inverse dynamics of a robot arm using an efficient exploration strategy. We
developed an active learning scheme for the LWPR algorithm [2] to guide data selection to regions
of high model uncertainty until a task-specific trajectory can be realized by the manipulator. We
position our work as an alternative to manual data collection (such as human guidance to specific
points in the task space) and to simpler exploration schemes such as random flailing of the robot
arm.

As in Vijayakumar et al’s work, we use a compliant composite controller consisting of a learned
feedforward model of the inverse dynamics and a low-gain corrective PID element. We address two
difficulties with data selection for robot control: first, points cannot be chosen freely from the input
distribution (order-sensitive scenario) and second, we would like to learn the inverse dynamics of
the system online. Our active learning algorithm trades off between exploitation of the current
LWPR model and exploration based on the confidence in the current LWPR predictions. In [1] we
derive confidence bounds around the LWPR model and use these during learning as follows:

1. At every time step we determine model prediction and prediction confidence for the current
query point xq. We postulate that the model generalization error is approximated by the size
of the confidence intervals.

2. If the confidence is above a threshold, we apply the model prediction as a control signal to
all joints and continue with step 1. Otherwise, we define xq−1, i.e., the last point that we
trusted our model predictions, as a setpoint.

3. We execute a number of directed exploratory actions around xq−1 to reduce the confidence
interval size. In our current implementation those are random control signals followed by
“resetting” the arm to the setpoint via high-gain PID control. We then continue with step 1.

By focusing exploration to the subspace where a particular task requires control, data collection
of our algorithm is trajectory-specific. In [1] we presented results for a simulated 2-DOF robot
arm along an arbitrary trajectory with a bell-shaped velocity profile. The work presented in this
poster extends the evaluation to a simulated 6-DOF Puma arm. For both we demonstrate that our
algorithm significantly reduces the number of data points (and time) required over random flailing
to learn an inverse model that successfully drives back the trajectory. Evaluations are presented as
reduction in normalized mean-square error (nMSE) along the trajectory with respect to the number
of data points used during learning.
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