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We propose a Bayesian nonparametric regression algo-
rithm with locally linear models for high-dimensional,
data-rich scenarios where real-time, incremental learn-
ing is necessary. Nonlinear function approximation
with high-dimensional input data is a nontrivial prob-
lem. For example, real-time learning of internal mod-
els for compliant control may be needed in a high-
dimensional movement system like a humanoid robot.
Fortunately, many real-world data sets tend to have
locally low dimensional distributions, despite having
high dimensional embedding [1, 2]. A successful algo-
rithm, thus, must avoid numerical problems arising po-
tentially from redundancy in the input data, eliminate
irrelevant input dimensions, and be computationally
efficient to allow for incremental, online learning.

Several methods have been proposed for nonlinear
function approximation, such as Gaussian process re-
gression [3], support vector regression [4] and varia-
tional Bayesian mixture models [5]. However, these
global methods tend to be unsuitable for fast, incre-
mental function approximation. Atkeson et al. [6] have
shown that in such scenarios, learning with spatially
localized models is more appropriate, particularly in
the framework of locally weighted learning. In re-
cent years, Vijayakumar et al. [7] have introduced a
learning algorithm designed to fulfill the fast, incre-
mental requirements of locally weighted learning, tar-
geting high-dimensional input domains through the
use of local projections. This algorithm, called Lo-
cally Weighted Projection Regression (LWPR), per-
forms competitively in its generalization performance
with state-of-the-art batch regression methods and has
been applied successfully to sensorimotor learning on
a humanoid robot.

The major issue with LWPR is that it requires gra-
dient descent (with leave-one-out cross-validation) to
optimize the local distance metrics in each local regres-
sion model. Since gradient descent search is sensitive
to the initial values, we propose a novel Bayesian treat-
ment of locally weighted regression with locally linear
models [8] that eliminates the need for any manual tun-
ing of meta parameters, cross-validation approaches or
sampling. Combined with variational approximation
methods to allow for fast, tractable inference, our al-

gorithm learns the optimal distance metric value for
each local regression model. It is able to automati-
cally determine the size of the neighborhood data (i.e.,
the “bandwidth”) that should contribute to each local
model. A Bayesian approach offers error bounds on
the distance metrics and incorporates this uncertainty
in the predictive distributions. By being able to auto-
matically detect relevant input dimensions, our algo-
rithm is able to handle high-dimensional data sets with
a large number of redundant and/or irrelevant input
dimensions and a large number of data samples. We
demonstrate competitive performance of our Bayesian
locally weighted regression algorithm with Gaussian
Process regression and LWPR on standard benchmark
sets.
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