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1 Extended Abstract

In many domains, demonstrating good behavior is eas-
ier than tuning parameters of an agent so that it be-
haves in a desirable way. A powerful recent idea to
approach problems of imitation learning is to struc-
ture the space of learned policies to be solutions to
search, planning, or, more generally, Markov Decision
Problems. The imitation learning problem then is re-
duced to recovering a reward function that induces the
demonstrated behavior.

Ratliff et al. [2] cast this problem as one of structured
maximum margin prediction (MMP). These authors
consider a class of loss functions that directly measure
disagreement between an expert and a learned policy,
and then efficiently learn a reward function using a
convex relaxation of the loss function using the struc-
tured margin method using only oracle access to an
MDP solver. However, this method suffers from some
significant drawbacks when a single policy is not signif-
icantly better than all other policies, which can occur
frequently in the presence of noise.

Abbeel and Ng [1] provide an alternate approach based
on Inverse Reinforcement Learning (IRL). They pro-
pose a strategy of matching feature expectations be-
tween an expert’s policy and a learner’s behavior. Un-
fortunately, both the IRL concept and the matching
feature counts are ambiguous. Each policy can be op-
timal for many reward functions (e.g., all zeros) and
many policies or distributions over state/action pairs
can lead to the the same feature counts. No method
is proposed to resolve the ambiguity.

In this work, we treat uncertainty about expert behav-
ior in a thoroughly probabilistic way. As in [1] and [2],
we require our policies to match feature expectations.
However, we attempt to estimate the probability of an
expert taking trajectories as p(ξ) using the principle of
maximum entropy, which suggests that the natural dis-
tribution on trajectories is the unique distribution that
maximizes the entropy of the distribution of trajecto-

ries subject to meeting the expectation constraints. In
the absence of additional knowledge, the problem then
is clear: maxH(p(ξ)) subject to Ep[fi(ξ)] = ci where
ci are feature counts experienced by the expert we wish
to imitate.

Solving this optimization problem yields a distribution

on trajectories of the form p(ξ) ∝ e−wT f , for feature
counts f . The most likely trajectory then is, naturally,
the one which minimizes wT f (where f is the feature
count over the trajectory). We show that MaxEntIRL
is more robust to noise than MMP and removes the
ambiguity about reward functions that occurs with
methods based on IRL, while providing the same key
guarantee. MaxEntIRL produces policies that achieve
(nearly) the same reward as the expert demonstrating
the policy on the expert’s unknown reward function –
even when that exact reward function is unrecoverable
(without ambiguity) from the available data.

For problems where actions have deterministic out-
comes, the gradient of this convex optimization is
then the difference between our learned policy’s fea-
ture expectations and those of the demonstrated policy
(Equation 1), for which we provide efficient algorithms
for fixed time thresholds.

δ
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P (ξ̃|w) = ci − Ep[fi(ξ)|w] (1)

We apply this method to learn context-sensitive driv-
ing route preferences. The features of each road seg-
ment (e.g., road type, number of lanes) are mapped
to a negative reward by parameters we optimize us-
ing over 100,000 miles of GPS trace data collected
from Yellow Cab Pittsburgh taxi drivers. The result-
ing model is employed for recommending routes that
use some of the traffic-avoding tricks that cab drivers
employ.
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