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ABSTRACT

Establishing a line-of-sight link between autonomous underwater vehicles (AUVs) is an unavoidable
challenge for realizing high data rate optical communication in ocean exploration. We propose a
method for link establishment by maintaining the relative position and orientation between AUVs.
Using a reinforcement learning algorithm, we search for the policy that can suppress external
disturbances and optimize the link establishment efficiency. To evaluate the performance of the
proposed method, we prepared a hovering AUV to conduct the link establishment experiments. The
reinforcement learning policy trained in a simulation environment was deployed on the AUV in real
environments. In field experiments, our approach successfully performed the link establishment from
the hovering AUV to an autonomous surface vehicle. Based on the experimental results, we evaluate
the performance of the AUV in executing the link establishment policy. Comparisons with existing

optical search-based link establishment methods are presented.

1. Introduction

The emerging Underwater Internet of Things (UloT)
concept is developed for connecting underwater platforms,
which is an extension of the Internet of Things to underwater
scenarios (Jahanbakht et al., 2021). The UloT technology
can enhance the real-time or near-real-time data sharing
between multiple platforms in underwater monitoring and
survey missions, such as oil plume detection (Wang et al.,
2022b), seafloor mapping (Matsuda et al., 2020), and envi-
ronment survey Zhang et al. (2020).

In the past few decades, the fixed underwater observato-
ries have been connected via fiber optic cables for high-speed
data sharing (Heesemann et al., 2014). Mobile platforms,
like autonomous underwater vehicles (AUVs), remotely op-
erated vehicles, and underwater gliders, play a prominent
role in ocean investigation, but are limited by underwater
communications (Kong et al., 2022). The state-of-the-art
underwater acoustic communication systems only support
the data transmission of about 1 - 100 Kilobit per second
(Kbps) (Huang et al., 2018). Meanwhile, the optical commu-
nication systems with LEDs can achieve an underwater com-
munication link in the order of Gigabits per second (Gbps)
(Wang et al., 2018). The underwater optical communication
(UWOC) technology can provide a high data rate solution
for underwater mobile platforms to exchange information.
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Monitoring and exploration of the underwater environment
will be more efficient with the high-speed UloT network.

Nowadays, UWOC technology has been developed sig-
nificantly, and its data rate as well as stability have been
greatly improved (Zhu et al., 2020). However, how to es-
tablish an underwater link is still a significant challenge
that limits the application of UWOC. Gabriel ef al. (Gabriel
et al., 2013) investigated the effect of misalignment on an
underwater optical link and emphasized the difficulty of
establishing a perfect alignment in practice. In general, there
are several link establishment issues that need to be solved in
the implementation of the UWOC across mobile platforms:

1) Directionality of light signals. Omnidirectional un-
derwater optical communication is difficult and inefficient
to achieve. The directivity of UWOC signals requires the
establishment of a link between two platforms;

2) Target location. To establish a link, the underwater
platform must complete the initial location identification and
continuously observe the status of the target.

3) External disturbances. In mobile platforms scenarios,
boresight and jitter effects caused by external disturbances
and uncertainties in the vehicle dynamic model remain a
problem (Yang et al., 2014).

One solution to the challenge of link establishment is to
ease the requirements on the alignment. Arnon et al. (Arnon
and Kedar, 2009) attempted to avoid the alignment problem
and proposed a non-line-of-sight (NLOS) network concept
in which the link is established by means of back-reflection
of the propagating optical signal at the ocean-air interface.
Sait et al. (Sait et al., 2019) utilized the diffused optical
signal to create the NLOS link, reducing the requirement for
the receiver location. NLOS links can be a good solution
for establishing links between mobile platforms, but there
are strict requirements for optical transceivers, environment,
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and effective distance. Severe signal attenuation, or even
complete loss of signal, can occur in communications, so a
sensitive photodetector is required at the receiving terminal.
At this point, the common background light from land and
bioluminescence can limit the ultimate sensitivity of the
receiver (Pontbriand et al., 2008). In addition, a seawater
medium with a high scattering coefficient is required in light
scattering based NLOS links, but this in turn affects the
effective propagation distance.

To establish a line-of-sight (LOS) link, tracking and
maintaining the relative position between two mobile plat-
forms is unavoidable. Existing link establishment methods
rely mainly on optical systems and scanning algorithms.
Similar to free space optical communication systems, Hardy
et al. (Hardy et al., 2019) developed a real-time beam direc-
tor that can quickly steer the beam in a specific direction. The
proposed spiral pattern scanning algorithm can converge the
alignment and maintain the link based on the detected light
intensity. Solanki et al. (Solanki et al., 2020) designed a
beam pointing system that can quickly and precisely adjust
the azimuth and elevation of the beam. This optical system
searches for a target along a triangular path and estimates the
center of the beam by a gradient ascent algorithm. The light
intensity based scanning methods can locate the center of the
beam and build a high quality communication link. However,
such scanning methods are often limited to local searches
within the coverage area of the optical beam. Most of the
research has not discussed how to obtain the initial position
information of each other in the vast ocean. Disturbances
from the marine environment can affect the stability of
the link but cannot be measured by the photodetector. In
addition, previous studies have paid no attention to mobile
platforms carrying optical communication devices.

We propose a method of establishing the LOS link by
maintaining the relative position and orientation between
AUVs. Establishing the LOS link by controlling the vehicles
does not rely on a real-time beam director or a detected
intensity-based beam-steering algorithm, as commonly used
in previous studies. This method can also be combined with
the optical system to further improve the LOS link’s stability.
The acoustic navigation is used to guide the establishment
process. With acoustic communication, AUVs can identify
the initial location even at a long distance, and continuously
observe the relative relationship. In our prior work (Weng
and Maki, 2021)(Weng et al., 2022), we used the reinforce-
ment learning algorithm to optimize the link establishment
process and verified it in a simulated environment. How-
ever, the discrepancy between the simulation and the real
environment can affect the performance of the reinforcement
learning policy in the sea environment. In this study, we
improved the policy and demonstrated the link establishment
method that can be applied in practical scenarios. To eval-
uate the performance of our proposed method in real sce-
narios, the field experiments were designed in this research.
The hovering-type AUV and an autonomous surface vehicle
(ASV) were prepared to validate the trained policy in the link
establishment experiment. From the results of the water tank

and at-sea experiments, the relative position and orientation
maintained between underwater platforms were acceptable
for establishing the LOS link. The experimental data showed
that the AUV could further reduce the position fluctuation to
improve the link stability. To benchmark the performance of
our method, we compared it with an existing triangular scan-
ning method (Solanki et al., 2020). The results showed the
advantages of our approach in establishing and maintaining
LOS links in the marine environment.

The rest of this article is organized as follows. Section
2 presents the link establishment task. The reinforcement
learning algorithm is utilized for policy training in Section
3. The hardware and algorithm of the experimental setup are
described in Section 4. Detailed experimental results from
water tank and sea trials are discussed in Section 5. The
conclusions are given in Section 6.

2. Model

2.1. LOS Communication Link

Underwater optical beams have strong directivity be-
cause of the angular distribution of the emitted light signal.
The directivity of UWOC yields a sector-shaped coverage
area instead of an omnidirectional area, which poses chal-
lenges to link establishment (Saeed et al., 2019). An under-
water optical communication experiment between underwa-
ter platforms was conducted in a water tank, shown in Fig.
1. The optical transmitter in an underwater vehicle emits an
optical beam and forms a sector-shaped coverage area. The
optical receiver is considered as an omnidirectional device
that can detect the light signal after entering this coverage
area (Gabriel et al., 2013).

As shown in Fig. 2, the LOS configuration is a straight-
forward form of optical links where the transmitter and
receiver devices communicate over an unobscured link. The
basic idea to maintain the LOS link is the optical beam from
the transmitter at least partially covers the corresponding
detector (Hoeher et al., 2021). In our method, the receiver
is expected to be located in the center of the optical beam
and /, meters away from the transmitter. The expected link
distance /, is affected by various factors such as absorption,
scattering, oceanic turbulence, source power, and hardware
configuration (Sahu and Shanmugam, 2018)(Weng et al.,
2019). The distance between the receiver and the optimal
point is defined as the pointing error d,, which needs to be
minimized during link maintenance. The maximum pointing
error dp ., s determined by the characteristics of the
optical transceivers.

In AUVs scenarios, the pointing error d, is affected by
random disruptions caused by environmental disturbances,
such as sea currents and oceanic turbulence. As a mobile
platform, the receiving platform is expected to change its
position due to its motion and environmental disturbances.

2.2. Link Establishment

We propose a method to establish the optical communi-
cation link by maintaining the relative position and orienta-
tion between AUVs. The LOS link can be maintained as long
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Figure 1: In the water tank, the receiver detected the optical
beam emitted from the transmitter carried by an underwater
vehicle. A LOS link is established.

Receiving AUV

(XR, yR‘ lpR' uR, UR, T'R)
Tranémitting AUV

(XT, yT‘ l/JT, U.T, UT, T'T)

Figure 2: The establishment of a LOS link between two
underwater platforms. The LOS link requires that the beam
from one transmitter at least partially covers the receiver.

as two AU Vs stably keep the required relationship. The AUV
that transmits optical signals is defined as the transmitting
AUYV, while the AUV that receives optical signals is called
the receiving AUV.

During link establishment, two AUVs should remain
at the same depth. The pressure sensor attached in the
underwater vehicle can determine its absolute depth with an
overall accuracy of about 0.01% of full scale (Kinsey et al.,
2006). Without the accumulated errors, the AUV can cruise
to a set depth. We consider the link establishment in the
horizontal plane because the jitter of the AUV in the vertical
plane is smaller than the coverage of the beam. We simplify
the motion planning of AUVs by reducing the number of
control state variables from the three-dimensional space to
the two-dimensional plane.

The model of optical link establishment between AUV
is defined in Fig. 2. In this research, the horizontal position
[x, y], surge velocity u, sway velocity v, yaw orientation v,
and yaw angular velocity r of AUVs are considered. The
superscript T and R indicate the variables belonging to the
transmitting AUV and the receiving AUV, respectively.

Two AUVs need to complete the initial location identifi-
cation, and then the transmitting AUV moves to the position
that meets the relative relationship requirements. During
optical communication, the transmitting AUV continuously
observes the relative relationship and maintains it through
motion planning. The acoustic navigation is utilized for the
initial location identification. The acoustic signal is the only
media available for underwater propagation over distances
of up to several kilometers (Stojanovic, 2007). To locate the
position of the receiving AUV, the transmitting AUV can
start the two-way travel time (TWTT) ranging (Kussat et al.,
2005). The TWTT ranging can measure the relative distance
ITR and the relative bearing angle of the transmitting AUV’s
side a”R. The estimates of position and orientation are up-
dated by a particle filter estimator running in the transmitting
AUV.

Once the receiving AUV’s position is determined, the
transmitting AUV can track the receiving AUV by control-
ling the surge velocity u” and yaw angular velocity 7', which
is basically available for all types of AUVs. The pointing
error d, that needs to be minimized can be calculated as:

1
dy = [(xR=xT =1, cosyT?+(R—y" =1, sinyT)*12 (1)

The transmitting AUV needs to keep relative position
and orientation to maintain a stable LOS link. Acoustic
navigation is constantly utilized for observing the relative
position and orientation since the relative relationship is
susceptible to vehicle motions, ocean turbulence, and ocean
currents. The TWTT ranging (Matsuda, 2021) and the bear-
ing only ranging (Fujita et al., 2019) are combined to guide
the transmitting AUV during maintenance. Compared to
TWTT ranging, the bearing only method is scalable for AUV
formation and requires fewer acoustic channel resources.
However, the observability of the bearing only ranging is
weak and only relative angles a’ X and a®" can be observed
(Weng and Maki, 2021). The transmitting AUV needs to
consider scalability and observability, and chooses TWTT
ranging or bearing only ranging depending on the current
state.

3. Reinforcement Learning

3.1. Establishment Policy

The policy trained by a reinforcement learning algorithm
is utilized to control the transmitting AUV to establish the
LOS link, considering:

1) the reinforcement learning algorithm succeeds in sup-
pressing the effects of external disturbances and uncertain-
ties in motion planning (Kober et al., 2013) (Wang et al.,
2022a);
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2) as a model-free method, the model of the ocean
environment and vehicle dynamics are not essential;

3) reinforcement learning can fuse different types of
data, such as vehicle motion states and acoustic ranging
results, to make decisions.

To use the reinforcement learning, the state space of the
agent is defined as:

_siny R uR R PR

s =[XA, Vs cosyR ,cos !, singT] (2)

where [x A yA] is the pointing error. The variables with hat

symbols are updated by a particle filter estimator. All vari-

ables in the state space are one-dimensional and continuous.
The action space of the agent is as follows:

T

T . .
a=1[u",r' iy il 3)

where the boolean variable i,,,, represents whether the
transmitting AUV requests for TWTT ranging or bearing
only ranging. The boolean variable i,, represents whether
the transmitting AUV turns on the optical transmitter in
the current timestep. These two actions are defined so that
reinforcement learning can optimize the usage of acoustic
channel resources and energy during the establishment pro-
cess.
We propose the reward function of the form:

1
= p](l + p2itwtt)(l + p3iop)d§ 4)

— PaUp = P5PA F Peldone

r(s, a)

where p; to pg are coefficients to determine the importance
of different reward terms. The u, and r, represent the
relative velocities in surge and yaw. A boolean variable i ;,,,
indicates if the link establishment is completed.

The flow of reinforcement learning policy is shown in
Fig. 3. Sensors on underwater vehicles need to collect and
observe the states defined in (2). When the current state is
available, the reinforcement learning policy can decide the
next action and output it to the executing device.

3.2. Policy Training

An optimal reinforcement learning policy that can per-
form the link establishment needs to be trained and then de-
ployed on the AUV. In this study, the soft actor-critic (SAC)
reinforcement learning algorithm presented by Haarnoja et
al. (Haarnoja et al., 2018b) is used to search for an optimal
policy z*. The objective that the SAC algorithm wants to
maximize is not only cumulative reward, but also entropy,
which is a measure of randomness in the policy. The mo-
tivation for using the SAC algorithm in policy training is:
1) The combination of cumulative reward and entropy items
in the objective function can enhance exploration ability
and avoid convergence to a bad local optimum; 2) The
maximum entropy requirement can minimize the need for
hyperparameter tuning. We can avoid hyperparameter tuning
when deploying on the actual machine; 3) Typical Gaussian
exploration may cause the action to jitter at high frequency.
The SAC algorithm can smooth the action by temporally

Acoustic
Device

Doppler ) C )
CVelocity Log Gyroscope

|
7] 7]

I Reinforcement Learning Policy I
[t [ [ e [ ] : /
Acoustlc Optical

CThmsters) C Device ) Gransmme)
Figure 3: The flowchart of reinforcement learning policy in the
link establishment process. It describes how the AUV observes
the environment and generates action decisions through the
reinforcement learning policy to complete the link establish-
ment task. Rounded rectangle symbols represent devices on
the AUV, and parallelogram symbols represent data available
for input or output. Rectangle symbols are used to represent

processes. Directional connectors represent the flow of data or
instructions.

correlating the exploration (Haarnoja et al., 2018a). For
underwater vehicles, the thrusters cannot handle the high
frequency of command changes and may be damaged.

We use the OpenAl Stable Baselines toolkit to imple-
ment the SAC algorithm in policy training (Hill et al.,
2018). As listed in Algorithm 1, the SAC algorithm collects
sample data to update the network by gradient descent. The
hyperparameters used in the policy training are listed in
Table 1. We use feedforward neural networks to initialize the
policy and target networks. The neural network consists of
two hidden layers, each with 64 neurons. Since no camera
and images are utilized in this study and the number of
observation dimensions is not large, this original structure is
sufficient. Referring to some benchmark applications of the
SAC algorithm (Haarnoja et al., 2018c), we set the discount
factor y and learning rate A to 0.99 and 0.0003, respectively.

In order to search for the optimal policy, the SAC algo-
rithm needs to learn from a substantial amount of sample
data. Considering the sample efficiency of the reinforcement
learning, we use the OpenAl Gym interface (Brockman
et al.,, 2016) to build a simulated environment for data
collection. As shown in Fig. 4, the transmitting AUV and
the receiving AUV are randomly initialized on a horizontal
plane. The reinforcement learning policy samples the actions
based on the current state. After the action is generated,
the simulator uses the kinematic model to calculate the next
state of the underwater vehicle. The reward for each step is
calculated according to (4).

The parameters in the simulator refer to the settings of
previous simulation studies and are modified based on the
real environment. Configuration of the coefficients in the
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reward function is a trade off between different controlling
objectives. In prior work (Weng et al., 2022), we trained
the policy in a simulated environment and evaluated the
configuration of the coefficients. When the coefficients p,
to pg in the reward function are set to 0.01, 9, 1, 0.01, 0.002,
and 10, respectively, the reinforcement learning policy can
converge faster and perform well. This configuration allows
the AUV to quickly approach the target and then adjust the
attitude for link establishment.

In order to deploy the reinforcement learning policy in
real scenarios, we improve the training of the policy. The end
condition is removed so that the AUV can maintain a stable
link for a long time. The maximum length of each episode
in the simulator is increased to 1500 steps, and the duration
of each step is reduced to 0.2 seconds. In this way, the
policy can control the underwater platform more precisely.
The optimization of the optical and acoustic devices for
energy saving is not considered in the current experiments.
To suppress the effects of external disturbance in the real
environment, we enhance noise interference in vehicle mo-
tion. In each step, the surge, sway, and yaw angular velocities
are affected by Gaussian noise with standard deviations of
0.1, 0.1, and 1, respectively. The maximum surge and yaw
angular velocities are 0.2 m/s and 0.2 rad/s, respectively. The
expected link distance /, is set to 5 meters.

At each environmental step, the simulator calculates the
states, actions, and rewards of the AUVs. The current state
s;, action a;, reward r(s;,a,), and the next state s, are
combined as a complete sample data. A total of 3 x 10°
steps of sample data are collected in the simulator for policy
training.

The trained policy is tested 100 times in the simulated
environment, and the results compared to the prior work
are presented in Fig. 5. Statistics show that the current
policy can maintain the link continuously for 68.86 seconds
and the total time for link maintenance is 120.47 seconds.
In contrast, in the prior work, the transmitting AUV only
needed to maintain the link for 10 seconds.

In summary, the advantages of the current policy and the
differences from the prior work are 1) The current policy
is trained in a new environment with high environmental
perturbations that is more similar to the real environment;
2) Change the end condition to allow the reinforcement
learning algorithm to explore the optimal policy that can
maintain the link for longer periods; 3) Increase the fre-
quency of action generation to enhance control efficiency,
allowing the current policy to establish the link in less time.
Therefore, the current policy is suitable for deployment in
field experiments.

4. Implementation

4.1. Underwater Platforms

The hovering-type AUV Tri-TON acted as the transmit-
ting AUV in actual machine experiments. The main concept
of this platform is the ability to hover. The AUV has a
payload space that allows the integration of different devices

Algorithm 1 Soft Actor-Critic (Haarnoja et al., 2018c)
Input:
Initialize target network 6, 6,
Initialize policy network ¢
Initialize target network weights 51 « 0, ,52 — 0,
Initialize an empty replay buffer to store sample data D «
9
for each iteration do
for each environment step do
Sample action according to the policy a, ~ my(a,|s,)
Execute action g, and sample reward r(s,, a,) and
new state 5,1 by 5,1 ~ p(s;1184 a,)
Store samples by D — DU {(s. a;, (s, a,), 5;41) }
end for
for each gradient step do
Update target network by 0, < 0, — 1 @91- Jp(8;) for
ie{l,2}
Update policy network by ¢p < ¢ — /1”@¢Jﬂ(¢)
Adjust temperature by « <« a — /Wa.f ()
Update target network weights by 5,- « 70,+(1 —1)5,-
fori e {1,2}
end for
end for
Output: 0,,0,,¢

Table 1

Hyperparameters configuration
Parameter Symbol Value
Layer of MLP 2
Neuron of MLP 64
Discount factor y 0.99
Learning rate A 0.0003
Buffer size 50000
Batch size 64

depending on the application. The specifications of the AUV
Tri-TON are given in Table 2. As shown in Fig. 7, a total of 5
thrusters are mounted on the underwater platform. A thruster
is configured in the transversal direction for controlling the
sway motion, and two thrusters are installed symmetrically
on both sides of the longitudinal axis to control the surge
and yaw motion. The other two thrusters are installed in the
vertical direction to maneuver the heave motion. The thruster
configuration is sufficient to support the motion required in
the link establishment task, including surge, yaw, and heave.
The power of each thruster is 100 watts, and the maximum
speed can reach 0.5 m/s.

There are three waterproof pressure hulls, including the
main controller hull and two battery hulls. Four lithium-
ion batteries in two battery hulls can provide the AUV to
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T
-10 -5 0 5 10 15
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Figure 4: The trajectories of the AUVs in the simulation
environment. The orange and red star markers are the starting
points for the transmitting AUV and the receiving AUV. The
positions of vehicles are plotted every 4 timesteps. The trans-
mitting AUV is cyclically represented by dark-blue, blue, blue-
violet, dark-violet, and violet triangles (every 20 timesteps),
while the receiving AUV is represented by black, dim-grey,
grey, dark-grey, and light-grey triangles. The sharp corner of
the triangle is the head of the vehicle.

operate for 8 hours. The main computer in the main hull is a
single board UP Core with Intel Atom x5-z8350 CPU. The
Ubuntu 20.04 operation system is installed in UP Core. The
computing resources on the main computer can support the
operation of the particle filter algorithm.

A Doppler velocity log (DVL) Teledyne RDI Navigator
1200 kHz, the red colored device in Fig. 7, is attached to
the bottom of the vehicle. It provides the measurement of
ground velocity. The SeaTrac X150 is used as the ultra-
short baseline (USBL) device and underwater acoustic com-
munication modem. The JAE JG-35FD is the fiber-optic
gyroscope (FOG) device that measures orientation. When
Tri-TON is on the sea surface, the WiFi antenna supports
the wireless connection, and the global navigation satellite
system (GNSS) service is available.

The ASV BUTTORI is used as the receiving AUV
in real experiments. BUTTORI has a dynamic positioning
ability and can deal with sea waves and strong winds. It
provides the position and acoustic ranging for underwater
platforms in the task. The SeaTrac X150 is the USBL device
for acoustic ranging and communication. Three waterproof
pressure hulls, including the main controller hull and two
battery hulls, are equipped in the surface vehicle. There are 3
thrusters mounted on the vehicle to control the surge and yaw
motion. It supports the wireless connection, and the GNSS
compass service is available.

4.2. Algorithm

To integrate the trained reinforcement learning policy
into the AUV control system, an open-source middleware
suite called Robot Operating System (ROS) is used for

[}

o

o
L

1
1

Previous Policy Current Policy

Figure 5: Comparison of the current policy with the policy
trained in prior work. The plot indicates the time taken by
the two policies to complete the link establishment task.
The end condition is that the transmitting AUV keeps the
pointing error within 1 meter and maintains it for 10 seconds.
In box-and-whisker plots, the lower and upper boundaries of
the box represent the 25th (Q1) and 75th (Q3) percentiles,
respectively; the bottom and top ends of the whisker indicate
the most extreme values within the lower limit Q1-1.5(Q3—-Q1)
and the upper limit Q3 + 1.5(Q3 — Q1), respectively; the red
line inside the box marks the median.

Figure 6: The hovering-type AUV Tri-TON is used as the
transmitting AUV in real experiments.

building AUV applications. It provides a set of software
libraries and tools for development. There are two basic
concepts called nodes and topics. A node represents a single
process running in the ROS system. It can take actions
based on information received from other nodes, and/or send
information to other nodes. Topics are named buses over
which nodes send and receive messages (Koubaa, 2019).
The topic defines the type of information that nodes want
to share.

The ROS graph structure used in Tri-TON is given in
Fig. 9. The USBL device, DVL device, FOG device, and
depth sensor are connected with corresponding ROS driver
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Table 2
AUV Tri-TON Specifications

Parameter Value (Device)

Size 1.40m (L) x 1.33 m (H) x 0.76
m (W)

Mass 230 kg

Max. Speed 0.5 m/s

Max. Depth 800 m

Duration 8 hours

Thruster 100 W thruster x 5

Battery Lilon 26.6 V 25 Ah x 4

Main Computer UP Core

DVL Teledyne RDI Navigator 1200
kHz

USBL SeaTrac X150

FOG JAE JG-35FD

Depth Sensor Mensor DPT6000

¥

Wireless LAN | |
antenna

GPS antenna

1455

Flash

Thruster
x5

Scanning sonar

Downward looking Camera

Forward looking
Camera

763

J Bottom view Unit: mm

Figure 7: The specifications of AUV Tri-TON.

| Flash 1412

nodes through serial communication. All data collected by
the aforementioned devices are published to the particle filter
state estimator. The states defined in (2), estimated by the
particle filter, are the input to the reinforcement learning
node called RLpolicy. The actions defined in (3), gener-
ated by the reinforcement learning policy, are performed by
thrusters, USBL devices, and an optical transmitter, respec-
tively.

Except for the reinforcement learning node RLpolicy, the
rest of the nodes are running on the main computer UP Core.

Figure 8: The ASV BUTTORI is used as the receiving AUV in
real experiments.

Joptical_node

policy_request

/depth_node

force_distributor

ref_thruster

Figure 9: The ROS graph structure in Tri-TON. The black
circle represents the node, and the blue square represents the
topic in the ROS system.

ref force }-—@uouonuouer

ref_position

In order to ensure that the reinforcement learning algorithm
has sufficient computing resources, a separate board UP
Board is used to compute the reinforcement learning policy.
The UP Board has Intel Atom x5-z8350 CPU and Ubuntu
operation system, and is physically connected to the UP
Core. The entire ROS system runs on two machines, where
the main computer is the master. In the RLpolicy node, the
reinforcement learning policy is operated using the OpenAl
Stable Baselines toolkit and Tensorflow. As shown in the
algorithm flow chart in Fig. 3, the reinforcement algorithm
computes actions when the observed state is available and
publishes the actions on the ROS system. The proposed link
establishment algorithm for deployment in AUVs is listed in
Algorithm 2.

4.3. Experiments

The water tank and sea experiments were prepared to
conduct the LOS link establishment task between the un-
derwater platforms. In the field experiments, the trained
reinforcement learning policy was deployed on Tri-TON.
The actions i,, and i, used by the agent optimize energy
and acoustic channel resources in simulations, but are not
currently used in real environments.
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Algorithm 2 Link Establishment Algorithm
Initialize the particle filter
Move to the same depth
Initialize the reinforcement learning policy
while data sharing is needed do
Maintain the same depth as the target
Update states u” , v! through the DVL
Update states y,", r! through the FOG
if acoustic ranging results are available then
Update states atTR, IR xtR, th, utR, UtR, q/tR
end if
Update states xtT, ytT, lI/,T sdag by the particle filter

Input states X, ya; cosyR, sinyR, uR oR R

t2> o
cosy,, siny] to the reinforcement learning policy
Generate actions u?, by the reinforce-
ment learning policy
if u, rT are available then
Execute actions u?, rtT by thrusters
end if
if i, , is available then
Execute actions i,,,, , by the acoustic device
end if
if i, is available then
Execute actions i
end if
end while

End the reinforcement learning policy

T . .
Ty Vet Yopt

op DY the optical transmitter

In the experiments, the AUV Tri-TON and the ASV
BUTTORI were randomly deployed on the sea surface. Tri-
TON needs to align with BUTTORI and shorten the pointing
error d. No GNSS service or radio communications were
used by Tri-TON in the experiments as they are not available
in underwater environments. The TWTT ranging between
Tri-TON and BUTTORI was performed every 6 seconds,
and the states of BUTTORI [xg, yg, Wg,Ug. Vg, Fr] Was
transmitted to Tri-TON through the acoustic signals.

During the experiments, the DVL recorded the ground
velocity, and the FOG measured the orientation angular ve-
locity of the vehicle. The position and relative relationship of
Tri-TON and BUTTORI were measured by TWTT ranging
and estimated by particle filter. The ROS system recorded
the decisions generated by the reinforcement learning policy.
The experiments were designed to evaluate and discuss the
following:

1) whether the underwater vehicle can execute decisions
generated by reinforcement learning policy;

2) whether the AUV can establish a LOS link and main-
tain the relative relationship;

3) the impact of external disturbances on alignment
disruptions, and whether the vehicle can handle the distur-
bances;

4) whether the AUV can establish a LOS link with a
moving target;

5) transfer of policy trained in simulated environments
to real scenarios.

Figure 10: A photo of the water tank experiment at the
Institute of Industrial Science, the University of Tokyo.

T
—— Policy Surge
—— Real Surge

I
0 10 20 30 40 50 60
Time (sec)

Figure 11: The surge velocity of Tri-TON in the water tank
experiment. The blue curve is the surge velocity generated by
the reinforcement learning policy, while the red curve is the real
surge velocity measured by the DVL device. The blue curve in
the figure is delayed by 1.1 seconds.

5. Results and Discussion

5.1. Water Tank Experiments

The purpose of water tank experiments was to verify that
the reinforcement learning policy trained in the simulation
environment can be deployed on real platforms. Compared to
the sea environment, external disturbances of the water tank
environment were not prominent. As shown in Fig. 10, we
conducted the experiments in the water tank at the Institute
of Industrial Science, the University of Tokyo. The size of
the water tank is 8 meters long, 8 meters wide, and 8 meters
deep. Tri-TON was controlled by a reinforcement learning
policy and needed to maintain a relative relationship with
BUTTORI. Due to the size of the water tank, the expected
link distance /, was set to 1 meter. The maximum surge and
yaw angular velocities of the Tri-TON were set to 0.2 m/s
and 0.2 rad/s, respectively. The BUTTORI kept stationary
in the water tank.

During link establishment, the deployed reinforcement
learning policy generated commands based on the current
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Figure 12: The yaw angular velocity of Tri-TON in the water
tank experiment. The blue curve is the yaw angular velocity
generated by the reinforcement learning policy, while the red
curve is the yaw angular velocity measured by the FOG device.
The blue curve in the figure is delayed by 0.8 seconds.
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Figure 13: The pointing error d, in the water tank experiment.

state. The commands for surge and yaw angular velocity are
represented as blue curves in Fig. 11 and 12. The actual surge
velocity of Tri-TON that DVL measured is the red curve in
Fig. 11, while the actual yaw angular velocity measured by
FOG is the red curve in Fig. 12. The same trend in the red and
blue curves shows that the AUV’s thrusters can execute the
motion commands from the reinforcement learning policy.
During motion, Tri-TON had 1.1 seconds and 0.8 seconds
delays in implementing the surge and yaw angular velocity
commands from the trained policy.

The pointing error d, that the Tri-TON needs to shorten
is presented in Fig. 13. Under the control of the reinforce-
ment learning policy, Tri-TON gradually approached the
target. Within 20 seconds, the pointing error d, was reduced
to within 1 meter and successfully maintained. From 20 to
60 seconds in this water tank experiment, the mean of the
pointing error was 0.74 meters and the standard deviation
was 0.08 meters.

The results of the water tank experiments demonstrated
that the experimental platforms we prepared could be used
to deploy and evaluate the trained reinforcement learning
policy in the real environment. AUV can stably maintain the
pointing error within 1 meter.

5.2. Sea Experiments - Dive 1

The sea experiments were implemented to evaluate the
performance of our method in a turbulent environment. As
shown in Fig. 14, we conducted sea experiments at Hiratsuka
Port, Japan. The depth of the port was about 3-5 meters. The
maximum surge and yaw angular velocities were set to 0.2

Figure 14: Sea experiments at Hiratsuka Port, Japan.

m/s and 0.2 rad/s, respectively. The expected link distance /,,
was set to 5 meters.

One of the sea experiments is presented in Fig. 15. The
collected experimental data are plotted based on a fixed
coordinate system. The AUV Tri-TON is represented by
the blue triangle, while the red star marker is the ASV
BUTTORI. The particle filter estimation results of the Tri-
TON are depicted by blue dots. The orange point is the
optimal point for optical communication. The yellow circle
represents the result of acoustic ranging. The parameters
listed in the bottom left corner are the time when reinforce-
ment learning policy starts in the experiment, the position
of Tri-TON (xT, yT), the standard deviation of particle filter
estimation results in the position, the yaw orientation of Tri-
TON 7, the standard deviation of particle filter estimation
results in yaw, the surge velocity command generated by
reinforcement learning policy, the surge velocity measured
by DVL, the yaw angular velocity command generated by
reinforcement learning policy, the yaw angular velocity mea-
sured by FOG, and the pointing error d,. The parameters
listed in the top left corner are the time when the latest
ranging results are received, the position of the BUTTORI,
the relative bearing angle measured by the USBL device in
Tri-TON, the relative bearing angle measured by the USBL
device in the ASV BUTTORI, and the relative distance.

Tri-TON was randomly initialized to establish the LOS
with BUTTORI. The initial position of Tri-TON was (4.31,
-0.07) meters, and the pointing error d, was 6.38 meters.
We did not move BUTTORI manually, and the platform was
affected by the ocean waves. The particle filter estimator
in the vehicle was initialized, and the standard deviation
of estimation results in position was (1.02, 0.97) meters.
The particles gradually converged as the acoustic ranging
results were continuously updated. At the 17.0 seconds of the
experiment, the pointing error d, was 0.34 meters. The stan-
dard deviation of estimation results in position was (0.46,
0.68) meters. The relative relationship between Tri-TON
and BUTTORI was suitable for establishing the LOS link.
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Figure 15: The states of AUV in the sea experiment (a) 1.0 s,
and (b) 17.0 s. The AUV Tri-TON is represented by the blue
triangle, and the sharp corner of the triangle is the head of the
vehicle. The red star marker is the ASV BUTTORI.

As shown in Fig. 18, the vehicle successfully maintained
the pointing error within two meters. The stability of the
link was worse than in the case of the water tank due to
more external disturbances in the sea environment. From
20 to 60 seconds in this sea experiment, the mean of the
pointing error was 0.69 meters. The standard deviation was
0.44 meters, which is obviously larger than the water tank
experiment.

The effect of perturbations was also reflected in the AUV
motion. Fig. 16 and 17 show that thrusters can execute the
command generated by the reinforcement learning policy
but are disturbed by the environment. The execution of the
surge and yaw angular velocity commands delayed by 3.2
and 1.0 seconds respectively from the commands of the
trained policy, which was longer than the delays in the water
tank experiment.
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Figure 16: The surge velocity of Tri-TON in the sea experiment
(Dive 1). The blue curve is the surge velocity generated by the
reinforcement learning policy, while the red curve is the real
surge velocity measured by the DVL device. The blue curve in
the figure is delayed by 3.2 seconds.
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Figure 17: The yaw angular velocity of Tri-TON in the sea
experiment (Dive 1). The blue curve is the yaw angular velocity
generated by the reinforcement learning policy, while the red
curve is the yaw angular velocity measured by the FOG device.
The blue curve in the figure is delayed by 1 second.
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Figure 18: The pointing error d, in the sea experiment (Dive

1).

5.3. Sea Experiments - Dive 2

Another experiment was conducted to test whether our
method can continuously track and align with the moving
target. The maximum surge and yaw angular velocities of
Tri-TON remained at 0.2 m/s and 0.2 rad/s, and the expected
link distance /, was 5 meters.

We manually moved BUTTORI and then stopped it dur-
ing the task. The trajectory of BUTTORI is given in Fig. 19.
As shown in Fig. 20, the position of BUTTORI at the 7.0 sec-
onds was (-0.70, -6.40) meters, which was already deviated
from the original position. With the acoustic ranging, the
AUV knew that the target had deviated and started to track
the moving BUTTORI. During the movement, the pointing
error became large, reaching 2.44 meters at 37.0 seconds.
When we stopped controlling BUTTORI, the pointing error
started to decrease. At 57.0 seconds of the experiment, the
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Figure 19: The trajectory of the ASV BUTTORI. The position
of BUTTORI is plotted every 6 seconds. During the movement,
the position of BUTTORI is represented by a red star. The time
is marked above the stars. When BUTTORI remains stationary,
the position is represented by an orange star.

pointing error was 0.34 meters. The surge and yaw angular
velocities during the moving phase are as shown in Fig.
22 and Fig. 23, respectively. Tri-TON had 2.5 seconds and
0.9 seconds delays in executing the surge and yaw angular
velocity commands.

The pointing error during the task is shown in 24. The
pointing error increased when we moved BUTTORI, and
decreased when it was dynamically positioned. From 0 to
50 seconds in this sea experiment, the mean of the pointing
error was 1.75 meters, and the standard deviation was 0.50
meters. Between 50 and 80 seconds, the mean of the pointing
error decreased to 0.54 meters, with a standard deviation of
0.36 meters.

5.4. Discussion

The results of water tank and sea experiments verify that
the link establishment method we proposed can be deployed
on real underwater vehicles. The developed platform sup-
ported reinforcement learning policy and particle filter esti-
mator operations. A suite of sensors on the AUV collected
the data needed for the state space. The thruster system
performed the commands generated by the reinforcement
learning policy. All data and commands were shared through
the topics in the ROS structure.

The LOS link was successfully established in both water
tank and sea environments. Through the guidance of the re-
inforcement learning policy, Tri-TON tracked the BUTTORI
and kept the relative position and orientation for link estab-
lishment. In sea experiments, the maximum pointing error
in yaw angle is about 20 degrees. This error is acceptable for
LED-based optical communication systems, since the half-
angle of the optical transmitter can easily be larger than 20
degrees (Rong et al., 2021). The pointing error results show
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(b) Sea experiment at 37.0 s

Figure 20: The states of AUV in the sea experiment (a) 7.0 s
and (b) 37.0 s. The AUV Tri-TON is represented by the blue
triangle, and the sharp corner of the triangle is the head of the
vehicle. The red star marker is the ASV BUTTORI.

that the relative relationship between the two platforms can
be maintained, indicating that the LOS link can be stable for
a long time.

The external disturbance from the sea environment had
an impact on link establishment. The experimental results
show that the actual surge and yaw angular velocities of Tri-
TON were similar to the commands generated by the policy,
but the differences still existed. The differences between
the Hiratsuka Port and the water tank environments were
obvious, which was reflected in Fig. 11, 12, 16, and 17.
The commands of surge and yaw angular velocity indicate
the pointing error can be further reduced. It shows that the
reinforcement learning policy does not handle the delay from
the platform’s thrusters well. With the statistics and delay
analysis, the AUV can further reduce the position fluctuation
during link establishment.

We conducted experiments to discuss the ability of es-
tablishing the LOS link with a moving target. The pointing
error was increased to about 2 meters due to the inaccurate
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Figure 21: The states of AUV in the sea experiment at 57.0
s. The AUV Tri-TON is represented by the blue triangle, and
the sharp corner of the triangle is the head of the vehicle. The
red star marker is the ASV BUTTORI.
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Figure 22: The surge velocity of AUV Tri-TON in the sea
experiment (Dive 2). The blue curve is the surge velocity
generated by the reinforcement learning policy, while the red
curve is the real surge velocity measured by the DVL device.
The blue curve in the figure is delayed by 2.5 seconds.
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Figure 23: The yaw angular velocity of AUV Tri-TON in the
sea experiment (Dive 2). The blue curve is the yaw angular
velocity generated by the reinforcement learning policy, while
the red curve is the yaw angular velocity measured by the FOG
device. The blue curve in the figure is delayed by 0.9 seconds.

receiver location information. This situation could get better
if the frequency of acoustic ranging is increased and the
acoustic transmission delay is taken into account in the par-
ticle filter. However, underwater acoustic channel resources
are very scarce, which is why we consider reducing the us-
age of acoustic channel resources in reinforcement learning
optimization.
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Figure 24: The pointing error d, in the sea experiment (Dive
2).

The policy implemented on Tri-TON was trained in
a simulated environment. The policy adaptability in field
experiments was affected by the gap between simulation and
the real environment. We randomized the initial conditions
in the simulated environment and introduced the pertur-
bations and noises in AUV motion. The performance of
the SAC algorithm in real-world applications is one reason
for choosing it (Haarnoja et al., 2018c). Maximum entropy
exploration allows us to avoid hyperparameter tuning when
transferring to the real environment. Action smoothing can
prevent the thruster from jittering at high frequency during
performing surge and yaw commands. The field experiments
proved that training the reinforcement learning policy in a
simulation environment and transferring the knowledge to
real AUVs are available and attractive for underwater optical
communication applications.

The reinforcement learning algorithm requires large
amounts of data to optimize the policy. Sampling data in sim-
ulations is efficient, while conducting field experiments and
collecting data in the real environment is time-consuming
and costly. In addition, sampling data in a simulation envi-
ronment does not need to worry about the safety problem of
the underwater platform, which is difficult to avoid in the sea
environment. The collected experimental data can be used
in the future to retrain the policy and gradually reduce the
gap between the simulation and the real world. The delay
problem of the thrusters in experiments will be considered
in simulations to improve the stability of the link.

5.5. Comparison

To benchmark the performance of our method, we com-
pared it with an existing link establishment method proposed
by Solanki et al. (Solanki et al., 2020). The basic concept
of the previous methods for LOS link establishment is to
quickly adjust the beam direction and search according to
the set path. The method presented by Solanki er al. is used
to solve the link establishment of LED-based underwater
optical communication, and the application scenario is sim-
ilar to our proposed method. Through the results of the
experiments and the comparison in the simulated environ-
ment, we discuss the triangular exploration method and our
approach in the following aspects: 1) applicable conditions
of the algorithm; 2) maximum initial distance between two
platforms; 3) time cost to establish the link; 4) stability under
disturbance; 5) detected light intensity. A summary of the
comparison is shown in Table 3.
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Table 3
Summary of comparison with benchmark approach

Triangular exploration

Our approach

Applicable conditions
Effective initial distance
Time to establish link 21 seconds

Stability

Light intensity High

Light field distribution is unimodal

Within the coverage of the optical signal

Error increases significantly when u > 0.16

Model-free

Within the coverage of the acoustic signal
16.4 seconds

Error increases when y > 0.20

Low
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Figure 25: lllustration of the triangular-exploration algorithm
(Solanki et al., 2020). The green arrow is the scanning path.
Based on the light intensity of the three vertices x/ £, x/ ¥, x] ¥,
the triangular-exploration algorithm decides the next path to
explore. Possible paths are indicated by red dashed arrows.

Solanki et al. designed an active transceiver module and
a triangular-exploration mode to track the optical signals.
Motors on the module are used to adjust the azimuth and
elevation of the LOS link. As shown in Fig. 25, the pho-
todiode in the module measures the light intensity of the
three vertices xZ_EZ, xZ_EI, xZE on the equilateral triangle and
compares them. The increase or decrease in light intensity
can determine whether the next measurement point is xoTE

W E k+1
okl Zfl,xTE xTE form

or x and the latest three points x PRrE i)

a new triangle for comparison. Repeating this triangular-
exploration path, the method can approach and track the
optimum point in the beam. There is no device to adjust

the relative distance on the module. The step size 6 for
triangular-exploration algorithm is \/5 degrees. The sam-
pling frequency f; is set to 100 Hz, so the angular speed
of the transceiver module w” ¥ is 173.2 deg/s, or 3.02 rad/s.

The applicable condition of the triangular-exploration
method is that the light field intensity distribution is uni-
modal. Light intensity based scanning methods all follow the
gradient of light intensity to estimate the optimal point where
the maximum intensity can be detected. Our approach uses
a model-free reinforcement learning algorithm to maneuver

the underwater vehicle. In the policy training, no special
environment model or AUV Tri-TON’s parameters are in-
cluded.

The triangular-exploration method requires a quasi-static
light source and the detector is covered by the optical beam.
Its maximum distance to identify the initial location de-
pends on the distance of the optical link, usually no more
than tens of meters. In the swimming pool experiment,
the initial relative distance between the two platforms was
1 meter. Triangular-exploration method has not discussed
how to obtain the initial position information in the sea
environment. In our sea experiments at Hiratsuka Port, we
randomly placed Tri-TON and BUTTORI, and the initial
relative distance between them was 4.31 meters. Consider-
ing the effective propagation distance of the acoustic signal,
the transmitting AUV can observe the states of the receiving
AUV at a distance of kilometers.

Both the experiments of the triangular-exploration method
and our method recorded the time used to establish the
link, but the initial conditions of the experiments were not
the same. In the triangular-exploration experiment, the two
platforms were one meter apart and the detector was covered
by a light source. The link was created in about 21 seconds.
In our sea experiment, the two platforms were initially 4.31
meters apart and had a pointing error of 6.38 meters. The
pointing error of the yaw angle was 86.16 degrees, which is
greater than the general beam-divergence angle. As shown in
Fig. 15, Tri-TON used 16.4 seconds to approach BUTTORI
and establish a link. The pointing error of the yaw angle was
0.46 degrees. As shown in Fig. 26, we also test the trained
policy in the simulated environment with the random initial
bearing angle. The average time cost to establish the link
in these 1000 episodes is 16.68 seconds. It shows that our
approach can establish the link much faster.

The stability of the LOS link is affected by external
disturbances such as ocean currents and turbulence. In the
triangular-exploration method, the researchers designed a
scenario in which the center of the beam is kept fluctuating in
a fixed path (circle) to test the algorithm’s ability to track the
beam under disturbances. The angular speed of the optimal
point during fluctuation is set to:

olE = 10V3z2 1y, (5)
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Figure 26: Distribution of time cost per episode to establish
the LOS link. A total of 1000 episodes are tested, and the few
episodes larger than 50 seconds are not presented.

where f, is the frequency of fluctuation. Experiments show
that the triangular algorithm failed to converge when the
frequency f,, reached 0.5 Hz. The corresponding angular
velocity w'E was 27.20 deg/s. For comparison with our
approach, we define a relative velocity coefficient u equal
to the ratio of the velocity of the target motion to its own

maximum motion velocity:

ol E
— o ~
M—aﬁfvo-mf}w (6)

According to the results presented in the study (Solanki
et al., 2020), the triangular-exploration algorithm started
to diverge in the tracking when the coefficient ;4 was 0.16
(f=0.5 Hz). We test the trained policy in several scenarios
with different i values. The maximum surge and yaw angu-
lar velocities of the transmitting AUV are set to 0.2 m/s and
0.2 rad/s. The receiving AUV moves continuously at a surge
velocity of 0.2 m/s, with a yaw angular velocity that takes
random values in the range of 0.2u rad/s to 0.2y rad/s. The
average pointing error of the transmitting AUV in different
scenarios is shown in Fig. 27. When the y value reaches 0.20,
the pointing error starts to increase, but the increase is not as
significant as that of the triangular-exploration algorithm.

The last concern is the light intensity detected by the
platform. For underwater optical communication, if the re-
ceived light intensity becomes higher, the signal-to-noise
ratio can be improved. The triangular-exploration method
outperforms our proposed method in maximizing the re-
ceived light intensity. One way to improve is to combine our
approach with scanning algorithms to improve the detected
light intensity in the future. Since we establish the LOS
link by maneuvering the AUV platform, no real-time beam
control system and light intensity-based maintenance algo-
rithm are used. According to experimental results, Tri-TON
bounded the pointing error to within 2 meters. The measured
pointing error can be shared with the optical system. On this
basis, using the detected light intensity to adjust the direction
of the optical beam can better maintain the LOS link.
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Figure 27: Pointing error of the trained policy in several
scenarios with different u values. In box-and-whisker plots,
the lower and upper boundaries of the box represent the 25th
(Q1) and 75th (Q3) percentiles, respectively; the bottom and
top ends of the whisker indicate the most extreme values
within the lower limit Q1 — 1.5(Q3 — Q1) and the upper limit
Q3 + 1.5(Q3 — Q1), respectively; the red line inside the box
marks the median.

6. Conclusion

The LOS link establishment between AUVs is of great
significance for realizing the high data rate of optical com-
munication in ocean exploration. With underwater optical
communication, connecting mobile platforms to UloT sys-
tems will enhance real-time data acquisition in underwa-
ter monitoring. To establish the LOS link, we propose an
acoustic navigation-based solution to maintain the relative
position and orientation between AUVs. The reinforcement
learning algorithm is utilized to search for the optimal link
establishment policy. We successfully deployed the trained
reinforcement learning policy on a real AUV and completed
field experiments. The experimental results show that Tri-
TON successfully tracked the target and maintained the LOS
link. The initial location identification for link establishment
is no longer restricted to the optical coverage area.

Our research could pave the way for future applications
of wireless optical communication in multiple AUVs. The
implementation in the actual machine validated the perfor-
mance of this new solution. The delay problem found in
field experiments can be solved in the future to improve the
stability of the LOS link. Compared with the previous optical
methods, this link establishment method does not require
additional beam pointing and scanning control. Combining
our proposed method with scanning techniques may be a
better way to address the challenges of underwater link
establishment in the future.
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